L(s) = 1 | − 1.30·2-s + 2.30·3-s − 0.302·4-s − 3·6-s + 0.697·7-s + 3·8-s + 2.30·9-s − 11-s − 0.697·12-s + 5·13-s − 0.908·14-s − 3.30·16-s + 6.90·17-s − 3.00·18-s − 19-s + 1.60·21-s + 1.30·22-s − 7.30·23-s + 6.90·24-s − 6.51·26-s − 1.60·27-s − 0.211·28-s + 0.908·29-s + 10.2·31-s − 1.69·32-s − 2.30·33-s − 9·34-s + ⋯ |
L(s) = 1 | − 0.921·2-s + 1.32·3-s − 0.151·4-s − 1.22·6-s + 0.263·7-s + 1.06·8-s + 0.767·9-s − 0.301·11-s − 0.201·12-s + 1.38·13-s − 0.242·14-s − 0.825·16-s + 1.67·17-s − 0.707·18-s − 0.229·19-s + 0.350·21-s + 0.277·22-s − 1.52·23-s + 1.41·24-s − 1.27·26-s − 0.308·27-s − 0.0398·28-s + 0.168·29-s + 1.83·31-s − 0.300·32-s − 0.400·33-s − 1.54·34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.182961415\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.182961415\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 + T \) |
good | 2 | \( 1 + 1.30T + 2T^{2} \) |
| 3 | \( 1 - 2.30T + 3T^{2} \) |
| 7 | \( 1 - 0.697T + 7T^{2} \) |
| 13 | \( 1 - 5T + 13T^{2} \) |
| 17 | \( 1 - 6.90T + 17T^{2} \) |
| 19 | \( 1 + T + 19T^{2} \) |
| 23 | \( 1 + 7.30T + 23T^{2} \) |
| 29 | \( 1 - 0.908T + 29T^{2} \) |
| 31 | \( 1 - 10.2T + 31T^{2} \) |
| 37 | \( 1 - 2.39T + 37T^{2} \) |
| 41 | \( 1 + 5.60T + 41T^{2} \) |
| 43 | \( 1 - 7.21T + 43T^{2} \) |
| 47 | \( 1 + 3T + 47T^{2} \) |
| 53 | \( 1 + 1.30T + 53T^{2} \) |
| 59 | \( 1 + 14.2T + 59T^{2} \) |
| 61 | \( 1 + 7.90T + 61T^{2} \) |
| 67 | \( 1 + 4T + 67T^{2} \) |
| 71 | \( 1 + 2.60T + 71T^{2} \) |
| 73 | \( 1 + 7.90T + 73T^{2} \) |
| 79 | \( 1 + 10.9T + 79T^{2} \) |
| 83 | \( 1 + 3.51T + 83T^{2} \) |
| 89 | \( 1 - 1.69T + 89T^{2} \) |
| 97 | \( 1 - 15.3T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.78569107765125652198036962703, −10.48247638226480207491174066169, −9.828676751240870473559103235701, −8.872738272852148831121062500243, −8.092446463864149651351578020368, −7.76138672389568340003500471012, −6.02203397942302661482326578065, −4.36728592533815128393952288598, −3.17737129625561151037734333671, −1.51170863797042810712464977372,
1.51170863797042810712464977372, 3.17737129625561151037734333671, 4.36728592533815128393952288598, 6.02203397942302661482326578065, 7.76138672389568340003500471012, 8.092446463864149651351578020368, 8.872738272852148831121062500243, 9.828676751240870473559103235701, 10.48247638226480207491174066169, 11.78569107765125652198036962703