Properties

Label 2-275-1.1-c1-0-11
Degree $2$
Conductor $275$
Sign $1$
Analytic cond. $2.19588$
Root an. cond. $1.48185$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 3-s + 2·4-s + 2·6-s + 2·7-s − 2·9-s + 11-s + 2·12-s − 4·13-s + 4·14-s − 4·16-s + 2·17-s − 4·18-s + 2·21-s + 2·22-s + 23-s − 8·26-s − 5·27-s + 4·28-s + 7·31-s − 8·32-s + 33-s + 4·34-s − 4·36-s − 3·37-s − 4·39-s − 8·41-s + ⋯
L(s)  = 1  + 1.41·2-s + 0.577·3-s + 4-s + 0.816·6-s + 0.755·7-s − 2/3·9-s + 0.301·11-s + 0.577·12-s − 1.10·13-s + 1.06·14-s − 16-s + 0.485·17-s − 0.942·18-s + 0.436·21-s + 0.426·22-s + 0.208·23-s − 1.56·26-s − 0.962·27-s + 0.755·28-s + 1.25·31-s − 1.41·32-s + 0.174·33-s + 0.685·34-s − 2/3·36-s − 0.493·37-s − 0.640·39-s − 1.24·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(275\)    =    \(5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(2.19588\)
Root analytic conductor: \(1.48185\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 275,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.838038282\)
\(L(\frac12)\) \(\approx\) \(2.838038282\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad5 \( 1 \)
11 \( 1 - T \)
good2 \( 1 - p T + p T^{2} \) 1.2.ac
3 \( 1 - T + p T^{2} \) 1.3.ab
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 5 T + p T^{2} \) 1.59.af
61 \( 1 - 12 T + p T^{2} \) 1.61.am
67 \( 1 - 7 T + p T^{2} \) 1.67.ah
71 \( 1 + 3 T + p T^{2} \) 1.71.d
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 15 T + p T^{2} \) 1.89.ap
97 \( 1 - 7 T + p T^{2} \) 1.97.ah
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.91373644505446088258662904950, −11.50442818083742402892485916796, −10.07566606066947823589561871516, −8.906461952934258973434563843342, −7.952532350978681778925001629133, −6.74210091587050441798111318378, −5.49322091026488161466653442724, −4.70136976599285716284507090528, −3.45386803680567664069181238677, −2.35074848930377289705338533775, 2.35074848930377289705338533775, 3.45386803680567664069181238677, 4.70136976599285716284507090528, 5.49322091026488161466653442724, 6.74210091587050441798111318378, 7.952532350978681778925001629133, 8.906461952934258973434563843342, 10.07566606066947823589561871516, 11.50442818083742402892485916796, 11.91373644505446088258662904950

Graph of the $Z$-function along the critical line