Properties

Label 2-2738-1.1-c1-0-77
Degree $2$
Conductor $2738$
Sign $-1$
Analytic cond. $21.8630$
Root an. cond. $4.67579$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 2.73·3-s + 4-s + 1.73·5-s − 2.73·6-s − 2·7-s + 8-s + 4.46·9-s + 1.73·10-s + 4.73·11-s − 2.73·12-s − 3.46·13-s − 2·14-s − 4.73·15-s + 16-s − 7.73·17-s + 4.46·18-s + 1.26·19-s + 1.73·20-s + 5.46·21-s + 4.73·22-s − 4.73·23-s − 2.73·24-s − 2.00·25-s − 3.46·26-s − 3.99·27-s − 2·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.57·3-s + 0.5·4-s + 0.774·5-s − 1.11·6-s − 0.755·7-s + 0.353·8-s + 1.48·9-s + 0.547·10-s + 1.42·11-s − 0.788·12-s − 0.960·13-s − 0.534·14-s − 1.22·15-s + 0.250·16-s − 1.87·17-s + 1.05·18-s + 0.290·19-s + 0.387·20-s + 1.19·21-s + 1.00·22-s − 0.986·23-s − 0.557·24-s − 0.400·25-s − 0.679·26-s − 0.769·27-s − 0.377·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2738 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2738 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2738\)    =    \(2 \cdot 37^{2}\)
Sign: $-1$
Analytic conductor: \(21.8630\)
Root analytic conductor: \(4.67579\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2738,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
37 \( 1 \)
good3 \( 1 + 2.73T + 3T^{2} \)
5 \( 1 - 1.73T + 5T^{2} \)
7 \( 1 + 2T + 7T^{2} \)
11 \( 1 - 4.73T + 11T^{2} \)
13 \( 1 + 3.46T + 13T^{2} \)
17 \( 1 + 7.73T + 17T^{2} \)
19 \( 1 - 1.26T + 19T^{2} \)
23 \( 1 + 4.73T + 23T^{2} \)
29 \( 1 - 8.66T + 29T^{2} \)
31 \( 1 + 1.26T + 31T^{2} \)
41 \( 1 + 9.92T + 41T^{2} \)
43 \( 1 - 0.928T + 43T^{2} \)
47 \( 1 - 4.73T + 47T^{2} \)
53 \( 1 - 2.53T + 53T^{2} \)
59 \( 1 + 2.53T + 59T^{2} \)
61 \( 1 + 1.73T + 61T^{2} \)
67 \( 1 - 10.1T + 67T^{2} \)
71 \( 1 - 3.46T + 71T^{2} \)
73 \( 1 + 4T + 73T^{2} \)
79 \( 1 + 13.2T + 79T^{2} \)
83 \( 1 + 5.66T + 83T^{2} \)
89 \( 1 + 6.80T + 89T^{2} \)
97 \( 1 + 7.73T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.510623138326621516476805013412, −7.01225481852326724150114620206, −6.65607482395423267467531681286, −6.17231498700478138211490893016, −5.43641703514560411782166993012, −4.60279281571557584904701699579, −3.97802021878727416133530663380, −2.58886391109544257098795459155, −1.51727124795067290893734406995, 0, 1.51727124795067290893734406995, 2.58886391109544257098795459155, 3.97802021878727416133530663380, 4.60279281571557584904701699579, 5.43641703514560411782166993012, 6.17231498700478138211490893016, 6.65607482395423267467531681286, 7.01225481852326724150114620206, 8.510623138326621516476805013412

Graph of the $Z$-function along the critical line