Properties

Label 2-2738-1.1-c1-0-106
Degree $2$
Conductor $2738$
Sign $-1$
Analytic cond. $21.8630$
Root an. cond. $4.67579$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 2.79·3-s + 4-s − 3.79·5-s + 2.79·6-s − 2·7-s + 8-s + 4.79·9-s − 3.79·10-s − 3.79·11-s + 2.79·12-s + 0.791·13-s − 2·14-s − 10.5·15-s + 16-s − 1.58·17-s + 4.79·18-s − 7.58·19-s − 3.79·20-s − 5.58·21-s − 3.79·22-s + 0.791·23-s + 2.79·24-s + 9.37·25-s + 0.791·26-s + 4.99·27-s − 2·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.61·3-s + 0.5·4-s − 1.69·5-s + 1.13·6-s − 0.755·7-s + 0.353·8-s + 1.59·9-s − 1.19·10-s − 1.14·11-s + 0.805·12-s + 0.219·13-s − 0.534·14-s − 2.73·15-s + 0.250·16-s − 0.383·17-s + 1.12·18-s − 1.73·19-s − 0.847·20-s − 1.21·21-s − 0.808·22-s + 0.164·23-s + 0.569·24-s + 1.87·25-s + 0.155·26-s + 0.962·27-s − 0.377·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2738 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2738 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2738\)    =    \(2 \cdot 37^{2}\)
Sign: $-1$
Analytic conductor: \(21.8630\)
Root analytic conductor: \(4.67579\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2738,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
37 \( 1 \)
good3 \( 1 - 2.79T + 3T^{2} \)
5 \( 1 + 3.79T + 5T^{2} \)
7 \( 1 + 2T + 7T^{2} \)
11 \( 1 + 3.79T + 11T^{2} \)
13 \( 1 - 0.791T + 13T^{2} \)
17 \( 1 + 1.58T + 17T^{2} \)
19 \( 1 + 7.58T + 19T^{2} \)
23 \( 1 - 0.791T + 23T^{2} \)
29 \( 1 - 0.791T + 29T^{2} \)
31 \( 1 + 5.37T + 31T^{2} \)
41 \( 1 + 5.20T + 41T^{2} \)
43 \( 1 + 6T + 43T^{2} \)
47 \( 1 - 1.58T + 47T^{2} \)
53 \( 1 - 7.58T + 53T^{2} \)
59 \( 1 + 7.58T + 59T^{2} \)
61 \( 1 + 8.20T + 61T^{2} \)
67 \( 1 - 7.37T + 67T^{2} \)
71 \( 1 - 9.16T + 71T^{2} \)
73 \( 1 + 9.37T + 73T^{2} \)
79 \( 1 - 12.7T + 79T^{2} \)
83 \( 1 + 3.16T + 83T^{2} \)
89 \( 1 + 6T + 89T^{2} \)
97 \( 1 + 4.41T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.430049700660278996550799263120, −7.72171211054302389873152461519, −7.14933880785220646855591311992, −6.34643379037890045416204545226, −4.95618354491442827153290424462, −4.16075339788162996450092463231, −3.55079034813787560044898625385, −2.96288475815850050195052766523, −2.07383749064450879319630605217, 0, 2.07383749064450879319630605217, 2.96288475815850050195052766523, 3.55079034813787560044898625385, 4.16075339788162996450092463231, 4.95618354491442827153290424462, 6.34643379037890045416204545226, 7.14933880785220646855591311992, 7.72171211054302389873152461519, 8.430049700660278996550799263120

Graph of the $Z$-function along the critical line