Properties

Label 2-2736-76.75-c1-0-39
Degree $2$
Conductor $2736$
Sign $0.229 + 0.973i$
Analytic cond. $21.8470$
Root an. cond. $4.67408$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 2.82i·7-s − 1.41i·11-s + 2.82i·13-s + 2·17-s + (−1 − 4.24i)19-s − 1.41i·23-s − 25-s − 7.07i·29-s + 6·31-s − 5.65i·35-s + 11.3i·37-s − 4.24i·41-s − 7.07i·47-s − 1.00·49-s + ⋯
L(s)  = 1  + 0.894·5-s − 1.06i·7-s − 0.426i·11-s + 0.784i·13-s + 0.485·17-s + (−0.229 − 0.973i)19-s − 0.294i·23-s − 0.200·25-s − 1.31i·29-s + 1.07·31-s − 0.956i·35-s + 1.85i·37-s − 0.662i·41-s − 1.03i·47-s − 0.142·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2736 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.229 + 0.973i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2736 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.229 + 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2736\)    =    \(2^{4} \cdot 3^{2} \cdot 19\)
Sign: $0.229 + 0.973i$
Analytic conductor: \(21.8470\)
Root analytic conductor: \(4.67408\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2736} (2431, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2736,\ (\ :1/2),\ 0.229 + 0.973i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.999544742\)
\(L(\frac12)\) \(\approx\) \(1.999544742\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
19 \( 1 + (1 + 4.24i)T \)
good5 \( 1 - 2T + 5T^{2} \)
7 \( 1 + 2.82iT - 7T^{2} \)
11 \( 1 + 1.41iT - 11T^{2} \)
13 \( 1 - 2.82iT - 13T^{2} \)
17 \( 1 - 2T + 17T^{2} \)
23 \( 1 + 1.41iT - 23T^{2} \)
29 \( 1 + 7.07iT - 29T^{2} \)
31 \( 1 - 6T + 31T^{2} \)
37 \( 1 - 11.3iT - 37T^{2} \)
41 \( 1 + 4.24iT - 41T^{2} \)
43 \( 1 - 43T^{2} \)
47 \( 1 + 7.07iT - 47T^{2} \)
53 \( 1 + 9.89iT - 53T^{2} \)
59 \( 1 - 8T + 59T^{2} \)
61 \( 1 + 8T + 61T^{2} \)
67 \( 1 + 2T + 67T^{2} \)
71 \( 1 - 8T + 71T^{2} \)
73 \( 1 + 73T^{2} \)
79 \( 1 + 8T + 79T^{2} \)
83 \( 1 + 12.7iT - 83T^{2} \)
89 \( 1 - 9.89iT - 89T^{2} \)
97 \( 1 + 2.82iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.628418519873205653505689124771, −7.979024601144416548478720392696, −6.93046491031248673035674699290, −6.51730782226577339672886193519, −5.62177203256154037941756271806, −4.68256906960174965616361121885, −3.96150018981954052938822647874, −2.85744984246124962714683867956, −1.83543257837750060927044170708, −0.66004913437722848509469054681, 1.36328994955260503026483027157, 2.32802530422637219936668147700, 3.13231266049494287666858825674, 4.30052410883299608639780508916, 5.53216175885071598134879869818, 5.62804488175347957839789838602, 6.54422947909739461180924384449, 7.57928460845954272202522472185, 8.247950402571882068434279879202, 9.113230658535619010469194486066

Graph of the $Z$-function along the critical line