L(s) = 1 | − 3·5-s + 1.73i·7-s + 5.19i·11-s + 6.92i·13-s − 3·17-s + (4 − 1.73i)19-s − 3.46i·23-s + 4·25-s − 4·31-s − 5.19i·35-s − 6.92i·37-s + 6.92i·41-s + 8.66i·43-s − 8.66i·47-s + 4·49-s + ⋯ |
L(s) = 1 | − 1.34·5-s + 0.654i·7-s + 1.56i·11-s + 1.92i·13-s − 0.727·17-s + (0.917 − 0.397i)19-s − 0.722i·23-s + 0.800·25-s − 0.718·31-s − 0.878i·35-s − 1.13i·37-s + 1.08i·41-s + 1.32i·43-s − 1.26i·47-s + 0.571·49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2736 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.917 + 0.397i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2736 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.917 + 0.397i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.4034990806\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4034990806\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 19 | \( 1 + (-4 + 1.73i)T \) |
good | 5 | \( 1 + 3T + 5T^{2} \) |
| 7 | \( 1 - 1.73iT - 7T^{2} \) |
| 11 | \( 1 - 5.19iT - 11T^{2} \) |
| 13 | \( 1 - 6.92iT - 13T^{2} \) |
| 17 | \( 1 + 3T + 17T^{2} \) |
| 23 | \( 1 + 3.46iT - 23T^{2} \) |
| 29 | \( 1 - 29T^{2} \) |
| 31 | \( 1 + 4T + 31T^{2} \) |
| 37 | \( 1 + 6.92iT - 37T^{2} \) |
| 41 | \( 1 - 6.92iT - 41T^{2} \) |
| 43 | \( 1 - 8.66iT - 43T^{2} \) |
| 47 | \( 1 + 8.66iT - 47T^{2} \) |
| 53 | \( 1 + 6.92iT - 53T^{2} \) |
| 59 | \( 1 + 12T + 59T^{2} \) |
| 61 | \( 1 - 7T + 61T^{2} \) |
| 67 | \( 1 - 8T + 67T^{2} \) |
| 71 | \( 1 + 12T + 71T^{2} \) |
| 73 | \( 1 + 5T + 73T^{2} \) |
| 79 | \( 1 + 8T + 79T^{2} \) |
| 83 | \( 1 - 3.46iT - 83T^{2} \) |
| 89 | \( 1 - 6.92iT - 89T^{2} \) |
| 97 | \( 1 + 6.92iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.212291945496614031425153989737, −8.558571977932800597808796766576, −7.60665540134120069815031270274, −7.05976695935073563409145620430, −6.46924621122733409412709229248, −5.13698122377714035576864543291, −4.41426893708808648998914503636, −3.93691725114823921101828932161, −2.62321827240139958344867851899, −1.72354329503954401126436974481,
0.15325068011453699940967475640, 1.05701477312683819753789372682, 3.01558305608033511446890935733, 3.44885171456428312088057428451, 4.24188192936261500795265067956, 5.38686810365043352245533050439, 5.93724806769214772529088030741, 7.20448437257015446406325909788, 7.64507147202340724519181813769, 8.288286964029819327067385635200