Properties

Label 2-2736-76.31-c1-0-15
Degree $2$
Conductor $2736$
Sign $-0.452 - 0.891i$
Analytic cond. $21.8470$
Root an. cond. $4.67408$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.66 + 2.87i)5-s + 2.71i·7-s − 0.985i·11-s + (4.33 + 2.50i)13-s + (2.51 + 4.35i)17-s + (0.193 + 4.35i)19-s + (−3.68 − 2.12i)23-s + (−3.01 + 5.22i)25-s + (−5.83 − 3.36i)29-s + 2.32·31-s + (−7.81 + 4.51i)35-s + 8.27i·37-s + (9.96 − 5.75i)41-s + (9.48 − 5.47i)43-s + (−6.41 − 3.70i)47-s + ⋯
L(s)  = 1  + (0.742 + 1.28i)5-s + 1.02i·7-s − 0.297i·11-s + (1.20 + 0.694i)13-s + (0.609 + 1.05i)17-s + (0.0443 + 0.999i)19-s + (−0.769 − 0.444i)23-s + (−0.602 + 1.04i)25-s + (−1.08 − 0.625i)29-s + 0.416·31-s + (−1.32 + 0.762i)35-s + 1.36i·37-s + (1.55 − 0.898i)41-s + (1.44 − 0.834i)43-s + (−0.935 − 0.540i)47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2736 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.452 - 0.891i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2736 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.452 - 0.891i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2736\)    =    \(2^{4} \cdot 3^{2} \cdot 19\)
Sign: $-0.452 - 0.891i$
Analytic conductor: \(21.8470\)
Root analytic conductor: \(4.67408\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2736} (1855, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2736,\ (\ :1/2),\ -0.452 - 0.891i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.143908199\)
\(L(\frac12)\) \(\approx\) \(2.143908199\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
19 \( 1 + (-0.193 - 4.35i)T \)
good5 \( 1 + (-1.66 - 2.87i)T + (-2.5 + 4.33i)T^{2} \)
7 \( 1 - 2.71iT - 7T^{2} \)
11 \( 1 + 0.985iT - 11T^{2} \)
13 \( 1 + (-4.33 - 2.50i)T + (6.5 + 11.2i)T^{2} \)
17 \( 1 + (-2.51 - 4.35i)T + (-8.5 + 14.7i)T^{2} \)
23 \( 1 + (3.68 + 2.12i)T + (11.5 + 19.9i)T^{2} \)
29 \( 1 + (5.83 + 3.36i)T + (14.5 + 25.1i)T^{2} \)
31 \( 1 - 2.32T + 31T^{2} \)
37 \( 1 - 8.27iT - 37T^{2} \)
41 \( 1 + (-9.96 + 5.75i)T + (20.5 - 35.5i)T^{2} \)
43 \( 1 + (-9.48 + 5.47i)T + (21.5 - 37.2i)T^{2} \)
47 \( 1 + (6.41 + 3.70i)T + (23.5 + 40.7i)T^{2} \)
53 \( 1 + (5.14 + 2.97i)T + (26.5 + 45.8i)T^{2} \)
59 \( 1 + (-1.66 - 2.87i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (-3.62 + 6.28i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (6.67 - 11.5i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + (2.19 + 3.79i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (2.52 + 4.37i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (5.48 + 9.49i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + 8.70iT - 83T^{2} \)
89 \( 1 + (-6.10 - 3.52i)T + (44.5 + 77.0i)T^{2} \)
97 \( 1 + (7.12 - 4.11i)T + (48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.049253531531749578710972286313, −8.367600803103527153950135485883, −7.58980929935333616703743706190, −6.49209961274152655839601198182, −5.97892576288560148017210586640, −5.68745934300661479593937442698, −4.11018621244616185360773034204, −3.38801947564209862461146589452, −2.37724053085598144865866202005, −1.64142948456804002362074995819, 0.73328609976646192169743460525, 1.41605480444089600546250177525, 2.79410428810237410622810586999, 3.94564731283392937911681530454, 4.64555992222260950803125042190, 5.51841242559288452138695455753, 6.05900445859745293351422239214, 7.23731749366624570465538834859, 7.78464547981729923823585021630, 8.658262926341398638386760552607

Graph of the $Z$-function along the critical line