L(s) = 1 | + (1.5 − 2.59i)5-s + 3.46i·7-s + 3.46i·11-s + (−4.5 + 2.59i)13-s + (1.5 − 2.59i)17-s + (4 + 1.73i)19-s + (−4.5 + 2.59i)23-s + (−2 − 3.46i)25-s + (−7.5 + 4.33i)29-s − 4·31-s + (9 + 5.19i)35-s + (−7.5 − 4.33i)41-s + (−10.5 − 6.06i)43-s + (1.5 − 0.866i)47-s − 4.99·49-s + ⋯ |
L(s) = 1 | + (0.670 − 1.16i)5-s + 1.30i·7-s + 1.04i·11-s + (−1.24 + 0.720i)13-s + (0.363 − 0.630i)17-s + (0.917 + 0.397i)19-s + (−0.938 + 0.541i)23-s + (−0.400 − 0.692i)25-s + (−1.39 + 0.804i)29-s − 0.718·31-s + (1.52 + 0.878i)35-s + (−1.17 − 0.676i)41-s + (−1.60 − 0.924i)43-s + (0.218 − 0.126i)47-s − 0.714·49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2736 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.671 - 0.740i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2736 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.671 - 0.740i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.8889004295\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8889004295\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 19 | \( 1 + (-4 - 1.73i)T \) |
good | 5 | \( 1 + (-1.5 + 2.59i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 - 3.46iT - 7T^{2} \) |
| 11 | \( 1 - 3.46iT - 11T^{2} \) |
| 13 | \( 1 + (4.5 - 2.59i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-1.5 + 2.59i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (4.5 - 2.59i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (7.5 - 4.33i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 4T + 31T^{2} \) |
| 37 | \( 1 - 37T^{2} \) |
| 41 | \( 1 + (7.5 + 4.33i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (10.5 + 6.06i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.5 + 0.866i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (1.5 - 0.866i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-1.5 + 2.59i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3.5 + 6.06i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (2.5 + 4.33i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (4.5 - 7.79i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (3.5 - 6.06i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (3.5 - 6.06i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 3.46iT - 83T^{2} \) |
| 89 | \( 1 + (7.5 - 4.33i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-7.5 - 4.33i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.255139258504715353664231124947, −8.558300385684690624453017341149, −7.54575132955787889438388616072, −6.93938064815398689877059183375, −5.64095604259584061062358339022, −5.31695715163246919843069387004, −4.70961742426921954335213273304, −3.45567569001419686576063645668, −2.10191905586835977574389162155, −1.72999439355718123626895946964,
0.25843238055216035560896507570, 1.74041106135087455574247838880, 2.95523602940204372613899049497, 3.47619937905243329355179866810, 4.57542470381745645237484483860, 5.65107159353087039085519855755, 6.22259444128984158306333876082, 7.17111337240995763810753187466, 7.56706297593131693773460330812, 8.397370015652534268373341671914