L(s) = 1 | + (1 + 1.73i)5-s − 3·7-s − 6·11-s + (0.5 − 0.866i)13-s + (1 + 1.73i)17-s + (4 + 1.73i)19-s + (0.500 − 0.866i)25-s + (1 − 1.73i)29-s + 31-s + (−3 − 5.19i)35-s − 7·37-s + (−0.5 − 0.866i)43-s + 2·49-s + (2 − 3.46i)53-s + (−6 − 10.3i)55-s + ⋯ |
L(s) = 1 | + (0.447 + 0.774i)5-s − 1.13·7-s − 1.80·11-s + (0.138 − 0.240i)13-s + (0.242 + 0.420i)17-s + (0.917 + 0.397i)19-s + (0.100 − 0.173i)25-s + (0.185 − 0.321i)29-s + 0.179·31-s + (−0.507 − 0.878i)35-s − 1.15·37-s + (−0.0762 − 0.132i)43-s + 0.285·49-s + (0.274 − 0.475i)53-s + (−0.809 − 1.40i)55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2736 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0977 + 0.995i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2736 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0977 + 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.6594099459\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6594099459\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 19 | \( 1 + (-4 - 1.73i)T \) |
good | 5 | \( 1 + (-1 - 1.73i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + 3T + 7T^{2} \) |
| 11 | \( 1 + 6T + 11T^{2} \) |
| 13 | \( 1 + (-0.5 + 0.866i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-1 - 1.73i)T + (-8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-1 + 1.73i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - T + 31T^{2} \) |
| 37 | \( 1 + 7T + 37T^{2} \) |
| 41 | \( 1 + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-2 + 3.46i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (4 + 6.92i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.5 + 9.52i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-7.5 + 12.9i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (3 + 5.19i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (4.5 + 7.79i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (6.5 + 11.2i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 14T + 83T^{2} \) |
| 89 | \( 1 + (6 - 10.3i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (5 + 8.66i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.532928050683265795602384277640, −7.82238903424665582494560254601, −7.07543669308832514395901371302, −6.29024350182358882230374406991, −5.65842290180056899052937424514, −4.85978345911270699019597705642, −3.41357512345962680548915484375, −3.02426399838629682618637700907, −2.02871854344298542827948004454, −0.22502981386753894468013350844,
1.11555320753126228611485908748, 2.57123971152385969107819401121, 3.17115571301512295286710814125, 4.40122110255866120191808017015, 5.44856397886939491188175788190, 5.57715049177454703771850884134, 6.88728570346914776697974970290, 7.39233269309537169760840267157, 8.443830514801603050453646626056, 8.981083274198676911421856097437