L(s) = 1 | + (2 + 3.46i)5-s + 3·7-s + 4·11-s + (−2.5 + 4.33i)13-s + (4 + 1.73i)19-s + (−2 + 3.46i)23-s + (−5.49 + 9.52i)25-s + (4 − 6.92i)29-s − 31-s + (6 + 10.3i)35-s − 5·37-s + (4 + 6.92i)41-s + (−2.5 − 4.33i)43-s + (4 − 6.92i)47-s + 2·49-s + ⋯ |
L(s) = 1 | + (0.894 + 1.54i)5-s + 1.13·7-s + 1.20·11-s + (−0.693 + 1.20i)13-s + (0.917 + 0.397i)19-s + (−0.417 + 0.722i)23-s + (−1.09 + 1.90i)25-s + (0.742 − 1.28i)29-s − 0.179·31-s + (1.01 + 1.75i)35-s − 0.821·37-s + (0.624 + 1.08i)41-s + (−0.381 − 0.660i)43-s + (0.583 − 1.01i)47-s + 0.285·49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2736 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0977 - 0.995i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2736 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0977 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.663652150\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.663652150\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 19 | \( 1 + (-4 - 1.73i)T \) |
good | 5 | \( 1 + (-2 - 3.46i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 - 3T + 7T^{2} \) |
| 11 | \( 1 - 4T + 11T^{2} \) |
| 13 | \( 1 + (2.5 - 4.33i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (2 - 3.46i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-4 + 6.92i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + T + 31T^{2} \) |
| 37 | \( 1 + 5T + 37T^{2} \) |
| 41 | \( 1 + (-4 - 6.92i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (2.5 + 4.33i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-4 + 6.92i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-2 + 3.46i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (6 + 10.3i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.5 + 0.866i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.5 + 2.59i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (8 + 13.8i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-7.5 - 12.9i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (3.5 + 6.06i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 + (6 - 10.3i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-1 - 1.73i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.241431494376915632436297351459, −8.131730964228801101711620765473, −7.32817658501532653875286554678, −6.73556085055988780283667544223, −6.08866185893380106237319383682, −5.19549848884685461009015931338, −4.20094931029252274647204638510, −3.31222740790048070237403236388, −2.15422673641753045623852449635, −1.60887496822223174216876199303,
0.932705803029573658256122849041, 1.54929220257768350982780903308, 2.72696892334717888625116720639, 4.13608802513676338527472232413, 4.90668742092623487607894746040, 5.34167253995475635532829145136, 6.13993357742049147799532149302, 7.26598114923559937606200382408, 8.029850932224612115333896879655, 8.843196246827819270476044869076