L(s) = 1 | + 5-s + 7-s − 11-s + 17-s − 19-s + 2·23-s + 35-s + 43-s − 47-s − 55-s − 61-s − 73-s − 77-s + 2·83-s + 85-s − 95-s − 2·101-s + 2·115-s + 119-s + ⋯ |
L(s) = 1 | + 5-s + 7-s − 11-s + 17-s − 19-s + 2·23-s + 35-s + 43-s − 47-s − 55-s − 61-s − 73-s − 77-s + 2·83-s + 85-s − 95-s − 2·101-s + 2·115-s + 119-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2736 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2736 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.599728238\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.599728238\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 19 | \( 1 + T \) |
good | 5 | \( 1 - T + T^{2} \) |
| 7 | \( 1 - T + T^{2} \) |
| 11 | \( 1 + T + T^{2} \) |
| 13 | \( ( 1 - T )( 1 + T ) \) |
| 17 | \( 1 - T + T^{2} \) |
| 23 | \( ( 1 - T )^{2} \) |
| 29 | \( ( 1 - T )( 1 + T ) \) |
| 31 | \( ( 1 - T )( 1 + T ) \) |
| 37 | \( ( 1 - T )( 1 + T ) \) |
| 41 | \( ( 1 - T )( 1 + T ) \) |
| 43 | \( 1 - T + T^{2} \) |
| 47 | \( 1 + T + T^{2} \) |
| 53 | \( ( 1 - T )( 1 + T ) \) |
| 59 | \( ( 1 - T )( 1 + T ) \) |
| 61 | \( 1 + T + T^{2} \) |
| 67 | \( ( 1 - T )( 1 + T ) \) |
| 71 | \( ( 1 - T )( 1 + T ) \) |
| 73 | \( 1 + T + T^{2} \) |
| 79 | \( ( 1 - T )( 1 + T ) \) |
| 83 | \( ( 1 - T )^{2} \) |
| 89 | \( ( 1 - T )( 1 + T ) \) |
| 97 | \( ( 1 - T )( 1 + T ) \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.043120676639309277434999195440, −8.198844554149815866554541180374, −7.62219979381158856777276810352, −6.70306557813243787913478861963, −5.77452295403062336094919108895, −5.18789380477369845738117220005, −4.51935419621189112379970413878, −3.17034571443940164985824061281, −2.28253428548503722999720628950, −1.32394939357817066302335234154,
1.32394939357817066302335234154, 2.28253428548503722999720628950, 3.17034571443940164985824061281, 4.51935419621189112379970413878, 5.18789380477369845738117220005, 5.77452295403062336094919108895, 6.70306557813243787913478861963, 7.62219979381158856777276810352, 8.198844554149815866554541180374, 9.043120676639309277434999195440