Properties

Label 2-2736-19.11-c1-0-29
Degree $2$
Conductor $2736$
Sign $0.980 + 0.194i$
Analytic cond. $21.8470$
Root an. cond. $4.67408$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2 + 3.46i)5-s + 3·11-s + (−1 − 1.73i)13-s + (1 − 1.73i)17-s + (−0.5 − 4.33i)19-s + (−3 − 5.19i)23-s + (−5.49 − 9.52i)25-s + (−2 − 3.46i)29-s + 10·31-s + 2·37-s + (4.5 − 7.79i)41-s + (−2 + 3.46i)43-s + (6 + 10.3i)47-s − 7·49-s + (−1 − 1.73i)53-s + ⋯
L(s)  = 1  + (−0.894 + 1.54i)5-s + 0.904·11-s + (−0.277 − 0.480i)13-s + (0.242 − 0.420i)17-s + (−0.114 − 0.993i)19-s + (−0.625 − 1.08i)23-s + (−1.09 − 1.90i)25-s + (−0.371 − 0.643i)29-s + 1.79·31-s + 0.328·37-s + (0.702 − 1.21i)41-s + (−0.304 + 0.528i)43-s + (0.875 + 1.51i)47-s − 49-s + (−0.137 − 0.237i)53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2736 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.980 + 0.194i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2736 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.980 + 0.194i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2736\)    =    \(2^{4} \cdot 3^{2} \cdot 19\)
Sign: $0.980 + 0.194i$
Analytic conductor: \(21.8470\)
Root analytic conductor: \(4.67408\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2736} (1873, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2736,\ (\ :1/2),\ 0.980 + 0.194i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.371997446\)
\(L(\frac12)\) \(\approx\) \(1.371997446\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
19 \( 1 + (0.5 + 4.33i)T \)
good5 \( 1 + (2 - 3.46i)T + (-2.5 - 4.33i)T^{2} \)
7 \( 1 + 7T^{2} \)
11 \( 1 - 3T + 11T^{2} \)
13 \( 1 + (1 + 1.73i)T + (-6.5 + 11.2i)T^{2} \)
17 \( 1 + (-1 + 1.73i)T + (-8.5 - 14.7i)T^{2} \)
23 \( 1 + (3 + 5.19i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (2 + 3.46i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 - 10T + 31T^{2} \)
37 \( 1 - 2T + 37T^{2} \)
41 \( 1 + (-4.5 + 7.79i)T + (-20.5 - 35.5i)T^{2} \)
43 \( 1 + (2 - 3.46i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + (-6 - 10.3i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + (1 + 1.73i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + (-0.5 + 0.866i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (-4 - 6.92i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (-4.5 - 7.79i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + (-3 + 5.19i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 + (-4.5 + 7.79i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (2 - 3.46i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 + 5T + 83T^{2} \)
89 \( 1 + (9 + 15.5i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (0.5 - 0.866i)T + (-48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.691218851785287854061457539685, −7.87804827729637453583934437159, −7.29290000988292650227785123127, −6.55552720790682901350491756988, −6.04531976640512516290977241350, −4.63561350299984874636273359287, −4.00013051104788343108469599350, −3.00625379657262912209151224413, −2.43073321518822523297544650794, −0.57557960081312173414355127123, 0.957658331862954592834736478013, 1.81986019631388670963194640673, 3.52349742961524866540511510952, 4.08979577855155459500776413082, 4.82734747068053733326938221757, 5.66179233959072772058893857353, 6.54690533405442325656730210136, 7.55862720882922425588903274927, 8.201785036080650947522854094004, 8.696197743870196792576350317335

Graph of the $Z$-function along the critical line