Properties

Label 2-273-273.74-c0-0-0
Degree $2$
Conductor $273$
Sign $-0.190 - 0.981i$
Analytic cond. $0.136244$
Root an. cond. $0.369113$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·2-s + (−0.866 + 0.5i)3-s + (0.866 − 0.5i)5-s + (−0.5 − 0.866i)6-s + (−0.5 + 0.866i)7-s + i·8-s + (0.499 − 0.866i)9-s + (0.5 + 0.866i)10-s − 13-s + (−0.866 − 0.5i)14-s + (−0.499 + 0.866i)15-s − 16-s i·17-s + (0.866 + 0.499i)18-s − 0.999i·21-s + ⋯
L(s)  = 1  + i·2-s + (−0.866 + 0.5i)3-s + (0.866 − 0.5i)5-s + (−0.5 − 0.866i)6-s + (−0.5 + 0.866i)7-s + i·8-s + (0.499 − 0.866i)9-s + (0.5 + 0.866i)10-s − 13-s + (−0.866 − 0.5i)14-s + (−0.499 + 0.866i)15-s − 16-s i·17-s + (0.866 + 0.499i)18-s − 0.999i·21-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.190 - 0.981i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.190 - 0.981i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(273\)    =    \(3 \cdot 7 \cdot 13\)
Sign: $-0.190 - 0.981i$
Analytic conductor: \(0.136244\)
Root analytic conductor: \(0.369113\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{273} (74, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 273,\ (\ :0),\ -0.190 - 0.981i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.6943622040\)
\(L(\frac12)\) \(\approx\) \(0.6943622040\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (0.866 - 0.5i)T \)
7 \( 1 + (0.5 - 0.866i)T \)
13 \( 1 + T \)
good2 \( 1 - iT - T^{2} \)
5 \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \)
11 \( 1 + (0.5 - 0.866i)T^{2} \)
17 \( 1 + iT - T^{2} \)
19 \( 1 + (-0.5 - 0.866i)T^{2} \)
23 \( 1 + iT - T^{2} \)
29 \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \)
31 \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \)
37 \( 1 - T + T^{2} \)
41 \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \)
43 \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \)
47 \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \)
53 \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \)
59 \( 1 - iT - T^{2} \)
61 \( 1 + (-0.5 - 0.866i)T^{2} \)
67 \( 1 + (-0.5 + 0.866i)T^{2} \)
71 \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \)
73 \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \)
79 \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \)
83 \( 1 - T^{2} \)
89 \( 1 - iT - T^{2} \)
97 \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.22814614557714800690323182148, −11.65151918990563666516021581874, −10.31687567105922283440639059795, −9.500996823775302586012334606579, −8.657188688802703417166928955622, −7.16237759234306319121707143661, −6.29154362102306211253296752947, −5.48172561341015488566674130080, −4.79555038552527192406901869376, −2.52377090036080620067152435299, 1.56870668635183199225822516103, 2.92245919067083545283945155759, 4.49079745162150097735768487124, 6.08316196652020099419979268741, 6.72194297379546005470977822708, 7.71822027925855096827287524729, 9.739224475355644980804424341740, 10.16590117329904319655039105015, 10.88761874408485011827668634404, 11.81635092291064623888707169402

Graph of the $Z$-function along the critical line