L(s) = 1 | + 0.843i·2-s + (−1.29 + 1.14i)3-s + 1.28·4-s + (1.06 − 1.84i)5-s + (−0.968 − 1.09i)6-s + (2.34 − 1.22i)7-s + 2.77i·8-s + (0.360 − 2.97i)9-s + (1.55 + 0.896i)10-s + (0.855 + 0.493i)11-s + (−1.67 + 1.48i)12-s + (3.08 − 1.86i)13-s + (1.03 + 1.97i)14-s + (0.737 + 3.60i)15-s + 0.240·16-s − 1.84·17-s + ⋯ |
L(s) = 1 | + 0.596i·2-s + (−0.748 + 0.663i)3-s + 0.644·4-s + (0.475 − 0.823i)5-s + (−0.395 − 0.446i)6-s + (0.886 − 0.463i)7-s + 0.980i·8-s + (0.120 − 0.992i)9-s + (0.490 + 0.283i)10-s + (0.257 + 0.148i)11-s + (−0.482 + 0.427i)12-s + (0.855 − 0.518i)13-s + (0.276 + 0.528i)14-s + (0.190 + 0.931i)15-s + 0.0600·16-s − 0.446·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.662 - 0.748i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.662 - 0.748i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.28203 + 0.577307i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.28203 + 0.577307i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.29 - 1.14i)T \) |
| 7 | \( 1 + (-2.34 + 1.22i)T \) |
| 13 | \( 1 + (-3.08 + 1.86i)T \) |
good | 2 | \( 1 - 0.843iT - 2T^{2} \) |
| 5 | \( 1 + (-1.06 + 1.84i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-0.855 - 0.493i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + 1.84T + 17T^{2} \) |
| 19 | \( 1 + (6.19 - 3.57i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 - 1.62iT - 23T^{2} \) |
| 29 | \( 1 + (-0.488 + 0.281i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (4.23 - 2.44i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 3.29T + 37T^{2} \) |
| 41 | \( 1 + (4.93 + 8.54i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (0.214 - 0.370i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-6.40 + 11.0i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (6.59 - 3.80i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + 11.9T + 59T^{2} \) |
| 61 | \( 1 + (-1.92 + 1.10i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.22 + 2.12i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-2.48 - 1.43i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (8.31 - 4.79i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (7.27 - 12.6i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 14.4T + 83T^{2} \) |
| 89 | \( 1 + 5.18T + 89T^{2} \) |
| 97 | \( 1 + (0.172 + 0.0997i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.90838122156871311620290471047, −10.91036570158931466447020793073, −10.46543042964214371869578243225, −9.016248859002807734368540961160, −8.209902666792774095966310444501, −6.91121612424261789547969299712, −5.88290531311987464185045135829, −5.14385298629465659950365293036, −3.95638260628068660056873827855, −1.61220772175311403545631515480,
1.64864084957145442537996846562, 2.61531336372782118178279641888, 4.50531439529721313957569188175, 6.18988025063443475796368448135, 6.48424628868315668807842514080, 7.69752997575354053977430059159, 8.956778352051963023107613535232, 10.44332739049861641988152903513, 11.08941032151908809112279608562, 11.44907336503623679415951471069