L(s) = 1 | + (0.866 − 0.5i)3-s + i·4-s + (−0.866 + 0.5i)7-s + (0.499 − 0.866i)9-s + (0.5 + 0.866i)12-s + (−0.866 − 0.5i)13-s − 16-s + (−0.5 − 1.86i)19-s + (−0.499 + 0.866i)21-s + (0.866 + 0.5i)25-s − 0.999i·27-s + (−0.5 − 0.866i)28-s + (0.366 + 1.36i)31-s + (0.866 + 0.499i)36-s + (−0.366 + 0.366i)37-s + ⋯ |
L(s) = 1 | + (0.866 − 0.5i)3-s + i·4-s + (−0.866 + 0.5i)7-s + (0.499 − 0.866i)9-s + (0.5 + 0.866i)12-s + (−0.866 − 0.5i)13-s − 16-s + (−0.5 − 1.86i)19-s + (−0.499 + 0.866i)21-s + (0.866 + 0.5i)25-s − 0.999i·27-s + (−0.5 − 0.866i)28-s + (0.366 + 1.36i)31-s + (0.866 + 0.499i)36-s + (−0.366 + 0.366i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.988 - 0.151i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.988 - 0.151i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8841725027\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8841725027\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.866 + 0.5i)T \) |
| 7 | \( 1 + (0.866 - 0.5i)T \) |
| 13 | \( 1 + (0.866 + 0.5i)T \) |
good | 2 | \( 1 - iT^{2} \) |
| 5 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 11 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 + (0.5 + 1.86i)T + (-0.866 + 0.5i)T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (-0.366 - 1.36i)T + (-0.866 + 0.5i)T^{2} \) |
| 37 | \( 1 + (0.366 - 0.366i)T - iT^{2} \) |
| 41 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 43 | \( 1 + (1.5 - 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 53 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 - iT^{2} \) |
| 61 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.366 - 1.36i)T + (-0.866 - 0.5i)T^{2} \) |
| 71 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 73 | \( 1 + (-0.5 + 0.133i)T + (0.866 - 0.5i)T^{2} \) |
| 79 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 - iT^{2} \) |
| 97 | \( 1 + (-0.5 - 0.133i)T + (0.866 + 0.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.48118834808656393411396723268, −11.50039269326311012155975661685, −10.02778342373682153317933010482, −8.995853668757567558734547247849, −8.458275221751799179445986034992, −7.19999517213636921111326628875, −6.67667278842671113982667147721, −4.81506723547575448029043494977, −3.26023046269095444679245470634, −2.59829944923730075654488430825,
2.12255267909996772894638217098, 3.69437790266692302866185565657, 4.79212920581174562751973967591, 6.13904334681480548249363222274, 7.19970698996099435722616349042, 8.421069920951592564501845676259, 9.572610669982683841410008885075, 10.02169589208203451454937177040, 10.76252135968319292679564830951, 12.18632022449698427180098031058