L(s) = 1 | + (−1.87 + 0.501i)2-s + (1.45 + 0.933i)3-s + (1.51 − 0.874i)4-s + (−1.33 + 0.358i)5-s + (−3.19 − 1.01i)6-s + (1.90 − 1.83i)7-s + (0.343 − 0.343i)8-s + (1.25 + 2.72i)9-s + (2.32 − 1.34i)10-s + (2.28 + 0.612i)11-s + (3.02 + 0.138i)12-s + (2.20 + 2.85i)13-s + (−2.64 + 4.38i)14-s + (−2.28 − 0.726i)15-s + (−2.21 + 3.84i)16-s + (1.10 + 1.90i)17-s + ⋯ |
L(s) = 1 | + (−1.32 + 0.354i)2-s + (0.842 + 0.538i)3-s + (0.757 − 0.437i)4-s + (−0.598 + 0.160i)5-s + (−1.30 − 0.414i)6-s + (0.720 − 0.693i)7-s + (0.121 − 0.121i)8-s + (0.419 + 0.907i)9-s + (0.735 − 0.424i)10-s + (0.689 + 0.184i)11-s + (0.873 + 0.0398i)12-s + (0.612 + 0.790i)13-s + (−0.706 + 1.17i)14-s + (−0.590 − 0.187i)15-s + (−0.554 + 0.960i)16-s + (0.267 + 0.462i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.349 - 0.936i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.349 - 0.936i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.718575 + 0.498742i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.718575 + 0.498742i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.45 - 0.933i)T \) |
| 7 | \( 1 + (-1.90 + 1.83i)T \) |
| 13 | \( 1 + (-2.20 - 2.85i)T \) |
good | 2 | \( 1 + (1.87 - 0.501i)T + (1.73 - i)T^{2} \) |
| 5 | \( 1 + (1.33 - 0.358i)T + (4.33 - 2.5i)T^{2} \) |
| 11 | \( 1 + (-2.28 - 0.612i)T + (9.52 + 5.5i)T^{2} \) |
| 17 | \( 1 + (-1.10 - 1.90i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.11 + 4.17i)T + (-16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (0.362 - 0.628i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 4.61iT - 29T^{2} \) |
| 31 | \( 1 + (-5.52 - 1.48i)T + (26.8 + 15.5i)T^{2} \) |
| 37 | \( 1 + (4.96 - 1.33i)T + (32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + (-6.19 - 6.19i)T + 41iT^{2} \) |
| 43 | \( 1 + 1.48iT - 43T^{2} \) |
| 47 | \( 1 + (1.11 + 4.15i)T + (-40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 + (-10.3 + 5.97i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (7.06 + 1.89i)T + (51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (-4.17 + 7.23i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.579 - 0.155i)T + (58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + (10.8 + 10.8i)T + 71iT^{2} \) |
| 73 | \( 1 + (2.05 - 7.65i)T + (-63.2 - 36.5i)T^{2} \) |
| 79 | \( 1 + (-3.29 + 5.70i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (1.03 + 1.03i)T + 83iT^{2} \) |
| 89 | \( 1 + (2.90 + 10.8i)T + (-77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (0.431 - 0.431i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.60935813399133201523343323643, −10.82726545299518321858714428381, −9.997280879349516166020183804955, −9.002040135827656181890626965623, −8.400827281656631624189440625869, −7.52656298966424312169776975887, −6.73808779761856230265743692418, −4.57664986177718232157551560199, −3.71234421102101933678756435564, −1.58791455377028226864509987018,
1.14172392696500628904318678270, 2.51581723060248619702206752892, 4.08862554939117879436566661109, 5.90311318542662237910036354872, 7.45361450575930581538206626220, 8.163729583783990658757764975835, 8.659117253148627130681426367444, 9.569842289247983139844018901922, 10.61759506373068035188386892467, 11.77764805555167164518258405470