L(s) = 1 | + (−1.64 + 0.439i)2-s + (1.02 − 1.39i)3-s + (0.769 − 0.444i)4-s + (3.49 − 0.936i)5-s + (−1.06 + 2.74i)6-s + (0.612 + 2.57i)7-s + (1.33 − 1.33i)8-s + (−0.914 − 2.85i)9-s + (−5.32 + 3.07i)10-s + (0.378 + 0.101i)11-s + (0.164 − 1.53i)12-s + (−0.988 + 3.46i)13-s + (−2.13 − 3.95i)14-s + (2.25 − 5.84i)15-s + (−2.49 + 4.31i)16-s + (0.773 + 1.33i)17-s + ⋯ |
L(s) = 1 | + (−1.16 + 0.311i)2-s + (0.589 − 0.807i)3-s + (0.384 − 0.222i)4-s + (1.56 − 0.419i)5-s + (−0.433 + 1.12i)6-s + (0.231 + 0.972i)7-s + (0.472 − 0.472i)8-s + (−0.304 − 0.952i)9-s + (−1.68 + 0.972i)10-s + (0.114 + 0.0305i)11-s + (0.0474 − 0.441i)12-s + (−0.274 + 0.961i)13-s + (−0.571 − 1.05i)14-s + (0.583 − 1.51i)15-s + (−0.623 + 1.07i)16-s + (0.187 + 0.324i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.950 + 0.311i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.950 + 0.311i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.05721 - 0.169117i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.05721 - 0.169117i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.02 + 1.39i)T \) |
| 7 | \( 1 + (-0.612 - 2.57i)T \) |
| 13 | \( 1 + (0.988 - 3.46i)T \) |
good | 2 | \( 1 + (1.64 - 0.439i)T + (1.73 - i)T^{2} \) |
| 5 | \( 1 + (-3.49 + 0.936i)T + (4.33 - 2.5i)T^{2} \) |
| 11 | \( 1 + (-0.378 - 0.101i)T + (9.52 + 5.5i)T^{2} \) |
| 17 | \( 1 + (-0.773 - 1.33i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.50 + 5.61i)T + (-16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (-2.82 + 4.89i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 5.29iT - 29T^{2} \) |
| 31 | \( 1 + (-7.37 - 1.97i)T + (26.8 + 15.5i)T^{2} \) |
| 37 | \( 1 + (0.893 - 0.239i)T + (32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + (5.40 + 5.40i)T + 41iT^{2} \) |
| 43 | \( 1 - 2.78iT - 43T^{2} \) |
| 47 | \( 1 + (1.72 + 6.45i)T + (-40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 + (-0.185 + 0.107i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (7.75 + 2.07i)T + (51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (5.29 - 9.16i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (0.139 + 0.0374i)T + (58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + (2.99 + 2.99i)T + 71iT^{2} \) |
| 73 | \( 1 + (-1.27 + 4.77i)T + (-63.2 - 36.5i)T^{2} \) |
| 79 | \( 1 + (7.10 - 12.2i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (5.55 + 5.55i)T + 83iT^{2} \) |
| 89 | \( 1 + (-3.50 - 13.0i)T + (-77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (6.33 - 6.33i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.99464845256690331823914232964, −10.52587822719520813937272333546, −9.435079528734046254348073702499, −8.936400261496659174271612349455, −8.424471577578118154539674472146, −6.94201790923258772934784937542, −6.32630844190375566711130588082, −4.88273623318395876865639424258, −2.50504201686196513522882041011, −1.45945287185633888714225884322,
1.64111265993273657074452578171, 3.02105619003132744437228044351, 4.72688400549294856129550545670, 5.89594252652649202304921494325, 7.50435102075328196794007263346, 8.304521539316382893979654378543, 9.496417927576270635222443773034, 10.03370864510913242268710659073, 10.38848145315005307461370654785, 11.35310842244252482253980627392