L(s) = 1 | + (0.866 − 0.5i)2-s − i·3-s + (−0.866 − 0.5i)5-s + (−0.5 − 0.866i)6-s + 7-s + i·8-s − 9-s − 0.999·10-s − 13-s + (0.866 − 0.5i)14-s + (−0.5 + 0.866i)15-s + (0.5 + 0.866i)16-s + (0.866 + 0.5i)17-s + (−0.866 + 0.5i)18-s − i·21-s + ⋯ |
L(s) = 1 | + (0.866 − 0.5i)2-s − i·3-s + (−0.866 − 0.5i)5-s + (−0.5 − 0.866i)6-s + 7-s + i·8-s − 9-s − 0.999·10-s − 13-s + (0.866 − 0.5i)14-s + (−0.5 + 0.866i)15-s + (0.5 + 0.866i)16-s + (0.866 + 0.5i)17-s + (−0.866 + 0.5i)18-s − i·21-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.313 + 0.949i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.313 + 0.949i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9983823539\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9983823539\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + iT \) |
| 7 | \( 1 - T \) |
| 13 | \( 1 + T \) |
good | 2 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 5 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 17 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.05737747511877156880135756866, −11.67679062703311331743736437548, −10.43893284793884885697851651955, −8.586813980643473255851884913155, −8.102510253783986063133748923304, −7.22015911817377249092855803164, −5.54177515987377050736600987747, −4.69790133843077734416287782185, −3.43217743974993885628629774674, −1.91498777277529916463850108324,
3.09985039398409065577220373210, 4.35513678342534857090569298681, 4.90190141434814279554660513346, 6.06171164672452308306480936993, 7.41491737937869675637560611374, 8.277139040614089191464118512021, 9.733548646959458786139553850933, 10.35910340508297083824188907895, 11.61821887565430342132888060443, 12.04003221924666949494666668799