L(s) = 1 | + (−0.866 + 0.5i)2-s + i·3-s + (0.866 + 0.5i)5-s + (−0.5 − 0.866i)6-s + 7-s − i·8-s − 9-s − 0.999·10-s − 13-s + (−0.866 + 0.5i)14-s + (−0.5 + 0.866i)15-s + (0.5 + 0.866i)16-s + (−0.866 − 0.5i)17-s + (0.866 − 0.5i)18-s + i·21-s + ⋯ |
L(s) = 1 | + (−0.866 + 0.5i)2-s + i·3-s + (0.866 + 0.5i)5-s + (−0.5 − 0.866i)6-s + 7-s − i·8-s − 9-s − 0.999·10-s − 13-s + (−0.866 + 0.5i)14-s + (−0.5 + 0.866i)15-s + (0.5 + 0.866i)16-s + (−0.866 − 0.5i)17-s + (0.866 − 0.5i)18-s + i·21-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.313 - 0.949i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.313 - 0.949i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5508547248\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5508547248\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - iT \) |
| 7 | \( 1 - T \) |
| 13 | \( 1 + T \) |
good | 2 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 5 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 17 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.24573181948763386845513585970, −11.04501307154811465532805628186, −10.33626314284726457354710881012, −9.430921381599960827968733502190, −8.820357422139587213868686433031, −7.71666080269870697623348431477, −6.66648145194786133686582957984, −5.33144545212742784641430491873, −4.26645754761237245793452582213, −2.55379765570476334429151299596,
1.46701386008400956752707974800, 2.34682277632814648869917901186, 4.93211054895975106987497877462, 5.74769694381576099472239387629, 7.19659665948944051596930199674, 8.217456342285713154561538748599, 8.977827777464243947026480799234, 9.818872203035465549130655288651, 11.01329888553444399217411246081, 11.60609477133265737722279990486