L(s) = 1 | + (−0.913 − 0.527i)2-s + (−1.53 + 0.808i)3-s + (−0.443 − 0.768i)4-s + (−0.000964 − 0.00167i)5-s + (1.82 + 0.0692i)6-s + (1.27 + 2.31i)7-s + 3.04i·8-s + (1.69 − 2.47i)9-s + 0.00203i·10-s − 2.49i·11-s + (1.30 + 0.818i)12-s + (−0.922 − 3.48i)13-s + (0.0616 − 2.78i)14-s + (0.00282 + 0.00177i)15-s + (0.717 − 1.24i)16-s + (−2.08 − 3.61i)17-s + ⋯ |
L(s) = 1 | + (−0.645 − 0.372i)2-s + (−0.884 + 0.466i)3-s + (−0.221 − 0.384i)4-s + (−0.000431 − 0.000747i)5-s + (0.745 + 0.0282i)6-s + (0.480 + 0.876i)7-s + 1.07i·8-s + (0.564 − 0.825i)9-s + 0.000643i·10-s − 0.752i·11-s + (0.375 + 0.236i)12-s + (−0.255 − 0.966i)13-s + (0.0164 − 0.745i)14-s + (0.000730 + 0.000459i)15-s + (0.179 − 0.310i)16-s + (−0.506 − 0.876i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0699 + 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0699 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.408127 - 0.380510i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.408127 - 0.380510i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.53 - 0.808i)T \) |
| 7 | \( 1 + (-1.27 - 2.31i)T \) |
| 13 | \( 1 + (0.922 + 3.48i)T \) |
good | 2 | \( 1 + (0.913 + 0.527i)T + (1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (0.000964 + 0.00167i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + 2.49iT - 11T^{2} \) |
| 17 | \( 1 + (2.08 + 3.61i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + 5.36iT - 19T^{2} \) |
| 23 | \( 1 + (-4.21 - 2.43i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-7.57 + 4.37i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (6.57 + 3.79i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (1.82 - 3.16i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-1.83 - 3.17i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.32 + 2.30i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.79 - 3.10i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (12.3 + 7.14i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-2.61 - 4.53i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + 7.57iT - 61T^{2} \) |
| 67 | \( 1 - 14.2T + 67T^{2} \) |
| 71 | \( 1 + (1.24 + 0.716i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-1.61 - 0.929i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-3.64 - 6.31i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 10.4T + 83T^{2} \) |
| 89 | \( 1 + (-2.70 + 4.67i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (2.07 + 1.19i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.20413847316022970798648047864, −10.99264141083584638159295869018, −9.760064614368240254357379649876, −9.087977874450718065085592085123, −8.121684155932047453061084646979, −6.51288440895331140023272836381, −5.37483374222330328816233383663, −4.80862883145424210091067134733, −2.71415038968547202156504200414, −0.65123597112070410503291738553,
1.48279006863789207919025445986, 3.98172731398836371655865398538, 4.96258012413120348058663970546, 6.64597287703719375887182661368, 7.15360559286636061455601121536, 8.083887496980624745323231278018, 9.179576421449984887769952061923, 10.35743320551162614732659792374, 10.99702435182621594256453455121, 12.35025244615818099821661141076