L(s) = 1 | − 3-s + (0.5 + 0.866i)4-s + (−0.5 + 0.866i)7-s + 9-s + (−0.5 − 0.866i)12-s + (0.5 + 0.866i)13-s + (−0.499 + 0.866i)16-s − 1.73i·19-s + (0.5 − 0.866i)21-s + (0.5 − 0.866i)25-s − 27-s − 0.999·28-s + (0.5 + 0.866i)36-s + (−1.5 − 0.866i)37-s + (−0.5 − 0.866i)39-s + ⋯ |
L(s) = 1 | − 3-s + (0.5 + 0.866i)4-s + (−0.5 + 0.866i)7-s + 9-s + (−0.5 − 0.866i)12-s + (0.5 + 0.866i)13-s + (−0.499 + 0.866i)16-s − 1.73i·19-s + (0.5 − 0.866i)21-s + (0.5 − 0.866i)25-s − 27-s − 0.999·28-s + (0.5 + 0.866i)36-s + (−1.5 − 0.866i)37-s + (−0.5 − 0.866i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.564 - 0.825i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.564 - 0.825i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6168446239\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6168446239\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + T \) |
| 7 | \( 1 + (0.5 - 0.866i)T \) |
| 13 | \( 1 + (-0.5 - 0.866i)T \) |
good | 2 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 5 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + 1.73iT - T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (1.5 + 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 - T + T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + (-1.5 - 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (-1 - 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (1.5 + 0.866i)T + (0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.21478609160988315795871640522, −11.44025993680020983483871662485, −10.73729017302974224375945052043, −9.359248616527200161023906761317, −8.510731366976896533047150480091, −7.00229180965700669090160272860, −6.54316899649752673161633725075, −5.26080347827440286494183730227, −3.93805820588745944624488189519, −2.38374102043130098665145034659,
1.32217805949075965076820073204, 3.59200892656335830214746979321, 5.08950355497316490780574246973, 6.00832376685068544816406181762, 6.79833414770465699130613908780, 7.83973197499347162017517243446, 9.568451186236934005366202867373, 10.41696182587682520291866098780, 10.77707517022733189925787755119, 11.87490388375215911035924395721