L(s) = 1 | + i·3-s + (0.866 + 0.5i)4-s + (−0.5 − 0.866i)7-s − 9-s + (−0.5 + 0.866i)12-s + (−0.866 − 0.5i)13-s + (0.499 + 0.866i)16-s + (−0.366 − 0.366i)19-s + (0.866 − 0.5i)21-s + (0.866 − 0.5i)25-s − i·27-s − 0.999i·28-s + (−0.366 + 1.36i)31-s + (−0.866 − 0.5i)36-s + (0.5 − 1.86i)37-s + ⋯ |
L(s) = 1 | + i·3-s + (0.866 + 0.5i)4-s + (−0.5 − 0.866i)7-s − 9-s + (−0.5 + 0.866i)12-s + (−0.866 − 0.5i)13-s + (0.499 + 0.866i)16-s + (−0.366 − 0.366i)19-s + (0.866 − 0.5i)21-s + (0.866 − 0.5i)25-s − i·27-s − 0.999i·28-s + (−0.366 + 1.36i)31-s + (−0.866 − 0.5i)36-s + (0.5 − 1.86i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.635 - 0.771i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.635 - 0.771i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8191014848\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8191014848\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - iT \) |
| 7 | \( 1 + (0.5 + 0.866i)T \) |
| 13 | \( 1 + (0.866 + 0.5i)T \) |
good | 2 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 5 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 11 | \( 1 - iT^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (0.366 + 0.366i)T + iT^{2} \) |
| 23 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (0.366 - 1.36i)T + (-0.866 - 0.5i)T^{2} \) |
| 37 | \( 1 + (-0.5 + 1.86i)T + (-0.866 - 0.5i)T^{2} \) |
| 41 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 43 | \( 1 + (1.5 - 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 53 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 61 | \( 1 + iT - T^{2} \) |
| 67 | \( 1 + (1 - i)T - iT^{2} \) |
| 71 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 73 | \( 1 + (-1.86 - 0.5i)T + (0.866 + 0.5i)T^{2} \) |
| 79 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 97 | \( 1 + (0.5 - 1.86i)T + (-0.866 - 0.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.21970123440303917988899681682, −11.04032795834345718993695084373, −10.53110970486695897649286361158, −9.616580360163929324624946920287, −8.430785080488699196297846898803, −7.34422395005505103383706224489, −6.40346037199099792192881583171, −4.99547877614419799826341225903, −3.75303998144454337047904639610, −2.73138368709904615285565722032,
1.90838659093179909856543945911, 2.95496702240470255425511401749, 5.20448120390647946006055764545, 6.23209285646454801820254691428, 6.89886168472651957365173336183, 7.954794161978453483082804853458, 9.128962960172365827268153908458, 10.13351917436779899710432283742, 11.38638383623674708729858974309, 11.96058346482206502516531793266