L(s) = 1 | − 1.48i·2-s + 3-s − 0.193·4-s + 4.15i·5-s − 1.48i·6-s + i·7-s − 2.67i·8-s + 9-s + 6.15·10-s + 3.19i·11-s − 0.193·12-s + (1.48 − 3.28i)13-s + 1.48·14-s + 4.15i·15-s − 4.35·16-s + 3.35·17-s + ⋯ |
L(s) = 1 | − 1.04i·2-s + 0.577·3-s − 0.0969·4-s + 1.85i·5-s − 0.604i·6-s + 0.377i·7-s − 0.945i·8-s + 0.333·9-s + 1.94·10-s + 0.963i·11-s − 0.0559·12-s + (0.410 − 0.911i)13-s + 0.395·14-s + 1.07i·15-s − 1.08·16-s + 0.812·17-s + ⋯ |
Λ(s)=(=(273s/2ΓC(s)L(s)(0.911+0.410i)Λ(2−s)
Λ(s)=(=(273s/2ΓC(s+1/2)L(s)(0.911+0.410i)Λ(1−s)
Degree: |
2 |
Conductor: |
273
= 3⋅7⋅13
|
Sign: |
0.911+0.410i
|
Analytic conductor: |
2.17991 |
Root analytic conductor: |
1.47645 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ273(64,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 273, ( :1/2), 0.911+0.410i)
|
Particular Values
L(1) |
≈ |
1.62783−0.349804i |
L(21) |
≈ |
1.62783−0.349804i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−T |
| 7 | 1−iT |
| 13 | 1+(−1.48+3.28i)T |
good | 2 | 1+1.48iT−2T2 |
| 5 | 1−4.15iT−5T2 |
| 11 | 1−3.19iT−11T2 |
| 17 | 1−3.35T+17T2 |
| 19 | 1+2.38iT−19T2 |
| 23 | 1−0.387T+23T2 |
| 29 | 1+7.92T+29T2 |
| 31 | 1+10.7iT−31T2 |
| 37 | 1−1.61iT−37T2 |
| 41 | 1+1.45iT−41T2 |
| 43 | 1−1.92T+43T2 |
| 47 | 1−3.76iT−47T2 |
| 53 | 1+6T+53T2 |
| 59 | 1−6.15iT−59T2 |
| 61 | 1−14.4T+61T2 |
| 67 | 1+5.61iT−67T2 |
| 71 | 1+11.8iT−71T2 |
| 73 | 1−15.6iT−73T2 |
| 79 | 1+8.96T+79T2 |
| 83 | 1+6.99iT−83T2 |
| 89 | 1+0.932iT−89T2 |
| 97 | 1−3.35iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.56720476208974907813891072134, −10.94397564747974915950440206639, −10.06455916659142812126974281203, −9.516988883160988772998483656947, −7.77011228778174988486872789695, −7.09291363604466615922813667379, −5.94391882187187924690171256339, −3.87614953088857811018814751358, −2.96676757074889381464756178226, −2.14084616359296801334897363508,
1.52575099620419627149295276262, 3.76025364319328962582934486898, 5.03503493557321978763522096659, 5.88370679230778932494542565513, 7.19932835911843331415049322696, 8.273983413923977410220968786711, 8.662685200341064569525488039054, 9.623737152634746465591811302880, 11.13230041507178718147523479814, 12.13448636713365840681108619974