L(s) = 1 | − 2.60i·2-s − 3-s − 4.78·4-s + 3.78i·5-s + 2.60i·6-s + i·7-s + 7.26i·8-s + 9-s + 9.86·10-s − 2.55i·11-s + 4.78·12-s + (0.0504 + 3.60i)13-s + 2.60·14-s − 3.78i·15-s + 9.34·16-s − 3.21·17-s + ⋯ |
L(s) = 1 | − 1.84i·2-s − 0.577·3-s − 2.39·4-s + 1.69i·5-s + 1.06i·6-s + 0.377i·7-s + 2.56i·8-s + 0.333·9-s + 3.11·10-s − 0.770i·11-s + 1.38·12-s + (0.0139 + 0.999i)13-s + 0.696·14-s − 0.977i·15-s + 2.33·16-s − 0.778·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.0139i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 - 0.0139i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.689165 + 0.00482116i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.689165 + 0.00482116i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + T \) |
| 7 | \( 1 - iT \) |
| 13 | \( 1 + (-0.0504 - 3.60i)T \) |
good | 2 | \( 1 + 2.60iT - 2T^{2} \) |
| 5 | \( 1 - 3.78iT - 5T^{2} \) |
| 11 | \( 1 + 2.55iT - 11T^{2} \) |
| 17 | \( 1 + 3.21T + 17T^{2} \) |
| 19 | \( 1 - 8.44iT - 19T^{2} \) |
| 23 | \( 1 - 3.97T + 23T^{2} \) |
| 29 | \( 1 + 2.86T + 29T^{2} \) |
| 31 | \( 1 + 0.868iT - 31T^{2} \) |
| 37 | \( 1 - 5.10iT - 37T^{2} \) |
| 41 | \( 1 - 3.34iT - 41T^{2} \) |
| 43 | \( 1 - 4.86T + 43T^{2} \) |
| 47 | \( 1 + 11.0iT - 47T^{2} \) |
| 53 | \( 1 - 1.33T + 53T^{2} \) |
| 59 | \( 1 + 10.6iT - 59T^{2} \) |
| 61 | \( 1 + 4.10T + 61T^{2} \) |
| 67 | \( 1 - 10.8iT - 67T^{2} \) |
| 71 | \( 1 - 2.55iT - 71T^{2} \) |
| 73 | \( 1 - 6.76iT - 73T^{2} \) |
| 79 | \( 1 + 1.23T + 79T^{2} \) |
| 83 | \( 1 - 11.0iT - 83T^{2} \) |
| 89 | \( 1 + 5.52iT - 89T^{2} \) |
| 97 | \( 1 + 5.65iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.46952878419035185351105067904, −11.20624085712223372363836853535, −10.34342225116925440242208628366, −9.617578497998867383954365145670, −8.394630935835769150844302279473, −6.83402604417269888314679100406, −5.70500596989721803795057690701, −4.09932386311301587863076699306, −3.14672796628683823510044043828, −1.92936211941682309606075020867,
0.58587456943888545848658042567, 4.43744846945057481022249463891, 4.89788523456000695994481810766, 5.80566514495652243480370975897, 7.02823843531887891378706487479, 7.78194743853113641228270778780, 8.971745893211077903057079126058, 9.333585296183280485376945106035, 10.84717425481544198818309178746, 12.40501148830028607896682818469