L(s) = 1 | + (0.924 − 0.533i)2-s + (0.5 + 0.866i)3-s + (−0.430 + 0.745i)4-s + 0.994i·5-s + (0.924 + 0.533i)6-s + (0.866 + 0.5i)7-s + 3.05i·8-s + (−0.499 + 0.866i)9-s + (0.530 + 0.919i)10-s + (−0.215 + 0.124i)11-s − 0.860·12-s + (−3.56 − 0.529i)13-s + 1.06·14-s + (−0.860 + 0.497i)15-s + (0.769 + 1.33i)16-s + (3.10 − 5.37i)17-s + ⋯ |
L(s) = 1 | + (0.653 − 0.377i)2-s + (0.288 + 0.499i)3-s + (−0.215 + 0.372i)4-s + 0.444i·5-s + (0.377 + 0.217i)6-s + (0.327 + 0.188i)7-s + 1.07i·8-s + (−0.166 + 0.288i)9-s + (0.167 + 0.290i)10-s + (−0.0650 + 0.0375i)11-s − 0.248·12-s + (−0.989 − 0.146i)13-s + 0.285·14-s + (−0.222 + 0.128i)15-s + (0.192 + 0.333i)16-s + (0.752 − 1.30i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.631 - 0.775i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.631 - 0.775i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.61031 + 0.764887i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.61031 + 0.764887i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 7 | \( 1 + (-0.866 - 0.5i)T \) |
| 13 | \( 1 + (3.56 + 0.529i)T \) |
good | 2 | \( 1 + (-0.924 + 0.533i)T + (1 - 1.73i)T^{2} \) |
| 5 | \( 1 - 0.994iT - 5T^{2} \) |
| 11 | \( 1 + (0.215 - 0.124i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-3.10 + 5.37i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-7.28 - 4.20i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (0.907 + 1.57i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (1.34 + 2.32i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 8.53iT - 31T^{2} \) |
| 37 | \( 1 + (3.66 - 2.11i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-5.57 + 3.21i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (5.71 - 9.89i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 10.6iT - 47T^{2} \) |
| 53 | \( 1 + 0.601T + 53T^{2} \) |
| 59 | \( 1 + (7.71 + 4.45i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (2.87 - 4.97i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.73 + 3.31i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-10.4 - 6.00i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 9.70iT - 73T^{2} \) |
| 79 | \( 1 + 5.63T + 79T^{2} \) |
| 83 | \( 1 + 16.5iT - 83T^{2} \) |
| 89 | \( 1 + (8.47 - 4.89i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-2.10 - 1.21i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.90415115896720172561142641539, −11.44525688243233719588643798882, −10.09636955394070426595318397427, −9.387076582688803430612710291332, −8.057711228987438188039566238852, −7.37860916359488873979378671446, −5.53575342336017049397703089183, −4.76156505754206309446520176625, −3.45507190714334913256543121503, −2.55837453557275015142563718932,
1.30027106143439142890700495617, 3.33944192466494705197134553226, 4.78344183299259218750180192738, 5.51333941367982064165923186739, 6.81889175336447890753830842084, 7.65194647095589810806352531479, 8.893611133017276410792124011485, 9.761033520791199629884848530722, 10.83688133239995747507969965189, 12.24456115666942736931115992896