Properties

Label 2-273-1.1-c1-0-6
Degree $2$
Conductor $273$
Sign $1$
Analytic cond. $2.17991$
Root an. cond. $1.47645$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.41·2-s − 3-s + 3.82·4-s − 2.41·6-s + 7-s + 4.41·8-s + 9-s + 2·11-s − 3.82·12-s − 13-s + 2.41·14-s + 2.99·16-s − 0.828·17-s + 2.41·18-s − 5.65·19-s − 21-s + 4.82·22-s + 1.17·23-s − 4.41·24-s − 5·25-s − 2.41·26-s − 27-s + 3.82·28-s − 3.65·29-s + 1.65·31-s − 1.58·32-s − 2·33-s + ⋯
L(s)  = 1  + 1.70·2-s − 0.577·3-s + 1.91·4-s − 0.985·6-s + 0.377·7-s + 1.56·8-s + 0.333·9-s + 0.603·11-s − 1.10·12-s − 0.277·13-s + 0.645·14-s + 0.749·16-s − 0.200·17-s + 0.569·18-s − 1.29·19-s − 0.218·21-s + 1.02·22-s + 0.244·23-s − 0.901·24-s − 25-s − 0.473·26-s − 0.192·27-s + 0.723·28-s − 0.679·29-s + 0.297·31-s − 0.280·32-s − 0.348·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(273\)    =    \(3 \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(2.17991\)
Root analytic conductor: \(1.47645\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 273,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.698665159\)
\(L(\frac12)\) \(\approx\) \(2.698665159\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
7 \( 1 - T \)
13 \( 1 + T \)
good2 \( 1 - 2.41T + 2T^{2} \)
5 \( 1 + 5T^{2} \)
11 \( 1 - 2T + 11T^{2} \)
17 \( 1 + 0.828T + 17T^{2} \)
19 \( 1 + 5.65T + 19T^{2} \)
23 \( 1 - 1.17T + 23T^{2} \)
29 \( 1 + 3.65T + 29T^{2} \)
31 \( 1 - 1.65T + 31T^{2} \)
37 \( 1 + 7.65T + 37T^{2} \)
41 \( 1 - 5.65T + 41T^{2} \)
43 \( 1 - 9.65T + 43T^{2} \)
47 \( 1 - 3.17T + 47T^{2} \)
53 \( 1 - 3.65T + 53T^{2} \)
59 \( 1 + 10.4T + 59T^{2} \)
61 \( 1 + 0.343T + 61T^{2} \)
67 \( 1 - 4T + 67T^{2} \)
71 \( 1 - 14T + 71T^{2} \)
73 \( 1 + 7.65T + 73T^{2} \)
79 \( 1 + 11.3T + 79T^{2} \)
83 \( 1 - 16.1T + 83T^{2} \)
89 \( 1 - 15.3T + 89T^{2} \)
97 \( 1 + 2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.11879618305232732790366468940, −11.29518608843858614815163999582, −10.55765662806467945537028057206, −9.083653609151694394209207435823, −7.54413780415935792002410909489, −6.50523871037060419535490232534, −5.71245602426191992357572839372, −4.63869215328836944881622050919, −3.81564192422094497201229732335, −2.14157049850050474625482236726, 2.14157049850050474625482236726, 3.81564192422094497201229732335, 4.63869215328836944881622050919, 5.71245602426191992357572839372, 6.50523871037060419535490232534, 7.54413780415935792002410909489, 9.083653609151694394209207435823, 10.55765662806467945537028057206, 11.29518608843858614815163999582, 12.11879618305232732790366468940

Graph of the $Z$-function along the critical line