L(s) = 1 | + i·2-s − 4-s + (2.17 − 0.5i)5-s − 4.35i·7-s − i·8-s + (0.5 + 2.17i)10-s + 4.35·11-s + 4.35·14-s + 16-s + 4i·17-s − 6·19-s + (−2.17 + 0.5i)20-s + 4.35i·22-s + 2i·23-s + (4.50 − 2.17i)25-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.5·4-s + (0.974 − 0.223i)5-s − 1.64i·7-s − 0.353i·8-s + (0.158 + 0.689i)10-s + 1.31·11-s + 1.16·14-s + 0.250·16-s + 0.970i·17-s − 1.37·19-s + (−0.487 + 0.111i)20-s + 0.929i·22-s + 0.417i·23-s + (0.900 − 0.435i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 270 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.974 - 0.223i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 270 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.974 - 0.223i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.42295 + 0.161130i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.42295 + 0.161130i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - iT \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-2.17 + 0.5i)T \) |
good | 7 | \( 1 + 4.35iT - 7T^{2} \) |
| 11 | \( 1 - 4.35T + 11T^{2} \) |
| 13 | \( 1 - 13T^{2} \) |
| 17 | \( 1 - 4iT - 17T^{2} \) |
| 19 | \( 1 + 6T + 19T^{2} \) |
| 23 | \( 1 - 2iT - 23T^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 - 7T + 31T^{2} \) |
| 37 | \( 1 - 8.71iT - 37T^{2} \) |
| 41 | \( 1 + 8.71T + 41T^{2} \) |
| 43 | \( 1 + 8.71iT - 43T^{2} \) |
| 47 | \( 1 - 2iT - 47T^{2} \) |
| 53 | \( 1 - 3iT - 53T^{2} \) |
| 59 | \( 1 + 8.71T + 59T^{2} \) |
| 61 | \( 1 + 4T + 61T^{2} \) |
| 67 | \( 1 + 8.71iT - 67T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 - 4.35iT - 73T^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 - 5iT - 83T^{2} \) |
| 89 | \( 1 - 8.71T + 89T^{2} \) |
| 97 | \( 1 - 4.35iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.11978981791208913163756420069, −10.66332091886511979844005050481, −10.07713811312692383146876162396, −9.020531779319398921644257226420, −8.053229304902307451834733415791, −6.70548239590063049571171499498, −6.31807200379814711901959686957, −4.73120116441461174560227768954, −3.79686094233131321407077484596, −1.39479614281458716766363622217,
1.89475710595397661077940748203, 2.90956297276339527698007690151, 4.63088320330289034880030398323, 5.83624473813148852273036815983, 6.63369949335041670626880174907, 8.525631392692962727035906310322, 9.146929222652268802095458709429, 9.879451865879765104275725031949, 11.05841395546642375152757259305, 11.94015517362948573116104937555