L(s) = 1 | + 1.41·2-s + 2.00·4-s + (4.41 + 2.34i)5-s − 13.6i·7-s + 2.82·8-s + (6.24 + 3.32i)10-s − 12.3i·11-s + 17.0i·13-s − 19.3i·14-s + 4.00·16-s + 6.89·17-s − 7.24·19-s + (8.82 + 4.69i)20-s − 17.4i·22-s + 34.7·23-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.500·4-s + (0.882 + 0.469i)5-s − 1.95i·7-s + 0.353·8-s + (0.624 + 0.332i)10-s − 1.11i·11-s + 1.30i·13-s − 1.38i·14-s + 0.250·16-s + 0.405·17-s − 0.381·19-s + (0.441 + 0.234i)20-s − 0.791i·22-s + 1.51·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 270 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.882 + 0.469i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 270 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.882 + 0.469i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.71312 - 0.676779i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.71312 - 0.676779i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - 1.41T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-4.41 - 2.34i)T \) |
good | 7 | \( 1 + 13.6iT - 49T^{2} \) |
| 11 | \( 1 + 12.3iT - 121T^{2} \) |
| 13 | \( 1 - 17.0iT - 169T^{2} \) |
| 17 | \( 1 - 6.89T + 289T^{2} \) |
| 19 | \( 1 + 7.24T + 361T^{2} \) |
| 23 | \( 1 - 34.7T + 529T^{2} \) |
| 29 | \( 1 - 21.1iT - 841T^{2} \) |
| 31 | \( 1 + 38.2T + 961T^{2} \) |
| 37 | \( 1 - 21.5iT - 1.36e3T^{2} \) |
| 41 | \( 1 + 36.3iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 6.23iT - 1.84e3T^{2} \) |
| 47 | \( 1 + 40.2T + 2.20e3T^{2} \) |
| 53 | \( 1 - 38.2T + 2.80e3T^{2} \) |
| 59 | \( 1 - 41.6iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 15.0T + 3.72e3T^{2} \) |
| 67 | \( 1 - 128. iT - 4.48e3T^{2} \) |
| 71 | \( 1 - 104. iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 2.11iT - 5.32e3T^{2} \) |
| 79 | \( 1 + 44.0T + 6.24e3T^{2} \) |
| 83 | \( 1 + 55.0T + 6.88e3T^{2} \) |
| 89 | \( 1 + 68.1iT - 7.92e3T^{2} \) |
| 97 | \( 1 + 101. iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.36118465453758383579685178465, −10.84354365827323052476974429431, −10.02046790530302211228153409666, −8.800392186624120245410938396897, −7.17260432168819703158296280509, −6.78804375527854317907766419803, −5.51090475078865156290186906006, −4.21093837532320859645935550454, −3.18422179962100390402530256259, −1.36308158674119424167385501271,
1.93732026409224515888187651683, 2.95677360655595698093305842488, 4.94701032449255639708063149594, 5.48588888482409586482675146182, 6.41924113980946893823344177050, 7.907132758885441625925730057259, 9.032688784319610829168448445392, 9.762561430130505667733978252728, 10.96082217037739127428287567064, 12.19785072131953477777015872910