| L(s) = 1 | + 2·2-s + 4·4-s + 5·5-s − 34·7-s + 8·8-s + 10·10-s − 48·11-s − 70·13-s − 68·14-s + 16·16-s − 27·17-s + 119·19-s + 20·20-s − 96·22-s − 51·23-s + 25·25-s − 140·26-s − 136·28-s − 30·29-s − 133·31-s + 32·32-s − 54·34-s − 170·35-s + 218·37-s + 238·38-s + 40·40-s + 156·41-s + ⋯ |
| L(s) = 1 | + 0.707·2-s + 1/2·4-s + 0.447·5-s − 1.83·7-s + 0.353·8-s + 0.316·10-s − 1.31·11-s − 1.49·13-s − 1.29·14-s + 1/4·16-s − 0.385·17-s + 1.43·19-s + 0.223·20-s − 0.930·22-s − 0.462·23-s + 1/5·25-s − 1.05·26-s − 0.917·28-s − 0.192·29-s − 0.770·31-s + 0.176·32-s − 0.272·34-s − 0.821·35-s + 0.968·37-s + 1.01·38-s + 0.158·40-s + 0.594·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 270 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 270 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 - p T \) |
| 3 | \( 1 \) |
| 5 | \( 1 - p T \) |
| good | 7 | \( 1 + 34 T + p^{3} T^{2} \) |
| 11 | \( 1 + 48 T + p^{3} T^{2} \) |
| 13 | \( 1 + 70 T + p^{3} T^{2} \) |
| 17 | \( 1 + 27 T + p^{3} T^{2} \) |
| 19 | \( 1 - 119 T + p^{3} T^{2} \) |
| 23 | \( 1 + 51 T + p^{3} T^{2} \) |
| 29 | \( 1 + 30 T + p^{3} T^{2} \) |
| 31 | \( 1 + 133 T + p^{3} T^{2} \) |
| 37 | \( 1 - 218 T + p^{3} T^{2} \) |
| 41 | \( 1 - 156 T + p^{3} T^{2} \) |
| 43 | \( 1 + 88 T + p^{3} T^{2} \) |
| 47 | \( 1 + 516 T + p^{3} T^{2} \) |
| 53 | \( 1 + 639 T + p^{3} T^{2} \) |
| 59 | \( 1 + 654 T + p^{3} T^{2} \) |
| 61 | \( 1 - 461 T + p^{3} T^{2} \) |
| 67 | \( 1 - 182 T + p^{3} T^{2} \) |
| 71 | \( 1 - 900 T + p^{3} T^{2} \) |
| 73 | \( 1 - 704 T + p^{3} T^{2} \) |
| 79 | \( 1 + 1375 T + p^{3} T^{2} \) |
| 83 | \( 1 - 915 T + p^{3} T^{2} \) |
| 89 | \( 1 + 1116 T + p^{3} T^{2} \) |
| 97 | \( 1 + 16 T + p^{3} T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.04808096779643323148631514759, −9.771981525158616709125140335092, −9.659199142328527385754734286334, −7.77080123284706219607571161618, −6.87512426971665547903541314881, −5.84414473820417251339515742521, −4.92225247148096354917764333429, −3.30244959599793526852919975734, −2.47391780274918379226364815515, 0,
2.47391780274918379226364815515, 3.30244959599793526852919975734, 4.92225247148096354917764333429, 5.84414473820417251339515742521, 6.87512426971665547903541314881, 7.77080123284706219607571161618, 9.659199142328527385754734286334, 9.771981525158616709125140335092, 11.04808096779643323148631514759