Properties

Label 2-270-1.1-c3-0-15
Degree $2$
Conductor $270$
Sign $-1$
Analytic cond. $15.9305$
Root an. cond. $3.99130$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 4·4-s + 5·5-s − 34·7-s + 8·8-s + 10·10-s − 48·11-s − 70·13-s − 68·14-s + 16·16-s − 27·17-s + 119·19-s + 20·20-s − 96·22-s − 51·23-s + 25·25-s − 140·26-s − 136·28-s − 30·29-s − 133·31-s + 32·32-s − 54·34-s − 170·35-s + 218·37-s + 238·38-s + 40·40-s + 156·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.447·5-s − 1.83·7-s + 0.353·8-s + 0.316·10-s − 1.31·11-s − 1.49·13-s − 1.29·14-s + 1/4·16-s − 0.385·17-s + 1.43·19-s + 0.223·20-s − 0.930·22-s − 0.462·23-s + 1/5·25-s − 1.05·26-s − 0.917·28-s − 0.192·29-s − 0.770·31-s + 0.176·32-s − 0.272·34-s − 0.821·35-s + 0.968·37-s + 1.01·38-s + 0.158·40-s + 0.594·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 270 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 270 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(270\)    =    \(2 \cdot 3^{3} \cdot 5\)
Sign: $-1$
Analytic conductor: \(15.9305\)
Root analytic conductor: \(3.99130\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 270,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p T \)
3 \( 1 \)
5 \( 1 - p T \)
good7 \( 1 + 34 T + p^{3} T^{2} \)
11 \( 1 + 48 T + p^{3} T^{2} \)
13 \( 1 + 70 T + p^{3} T^{2} \)
17 \( 1 + 27 T + p^{3} T^{2} \)
19 \( 1 - 119 T + p^{3} T^{2} \)
23 \( 1 + 51 T + p^{3} T^{2} \)
29 \( 1 + 30 T + p^{3} T^{2} \)
31 \( 1 + 133 T + p^{3} T^{2} \)
37 \( 1 - 218 T + p^{3} T^{2} \)
41 \( 1 - 156 T + p^{3} T^{2} \)
43 \( 1 + 88 T + p^{3} T^{2} \)
47 \( 1 + 516 T + p^{3} T^{2} \)
53 \( 1 + 639 T + p^{3} T^{2} \)
59 \( 1 + 654 T + p^{3} T^{2} \)
61 \( 1 - 461 T + p^{3} T^{2} \)
67 \( 1 - 182 T + p^{3} T^{2} \)
71 \( 1 - 900 T + p^{3} T^{2} \)
73 \( 1 - 704 T + p^{3} T^{2} \)
79 \( 1 + 1375 T + p^{3} T^{2} \)
83 \( 1 - 915 T + p^{3} T^{2} \)
89 \( 1 + 1116 T + p^{3} T^{2} \)
97 \( 1 + 16 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.04808096779643323148631514759, −9.771981525158616709125140335092, −9.659199142328527385754734286334, −7.77080123284706219607571161618, −6.87512426971665547903541314881, −5.84414473820417251339515742521, −4.92225247148096354917764333429, −3.30244959599793526852919975734, −2.47391780274918379226364815515, 0, 2.47391780274918379226364815515, 3.30244959599793526852919975734, 4.92225247148096354917764333429, 5.84414473820417251339515742521, 6.87512426971665547903541314881, 7.77080123284706219607571161618, 9.659199142328527385754734286334, 9.771981525158616709125140335092, 11.04808096779643323148631514759

Graph of the $Z$-function along the critical line