Properties

Label 2-26e2-52.23-c0-0-1
Degree $2$
Conductor $676$
Sign $0.265 + 0.964i$
Analytic cond. $0.337367$
Root an. cond. $0.580833$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.866 − 0.5i)2-s + (0.499 − 0.866i)4-s i·5-s − 0.999i·8-s + (−0.5 + 0.866i)9-s + (−0.5 − 0.866i)10-s + (−0.5 − 0.866i)16-s + (−0.5 + 0.866i)17-s + 0.999i·18-s + (−0.866 − 0.499i)20-s + (0.5 + 0.866i)29-s + (−0.866 − 0.499i)32-s + 0.999i·34-s + (0.499 + 0.866i)36-s + (0.866 − 0.5i)37-s + ⋯
L(s)  = 1  + (0.866 − 0.5i)2-s + (0.499 − 0.866i)4-s i·5-s − 0.999i·8-s + (−0.5 + 0.866i)9-s + (−0.5 − 0.866i)10-s + (−0.5 − 0.866i)16-s + (−0.5 + 0.866i)17-s + 0.999i·18-s + (−0.866 − 0.499i)20-s + (0.5 + 0.866i)29-s + (−0.866 − 0.499i)32-s + 0.999i·34-s + (0.499 + 0.866i)36-s + (0.866 − 0.5i)37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 676 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.265 + 0.964i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 676 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.265 + 0.964i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(676\)    =    \(2^{2} \cdot 13^{2}\)
Sign: $0.265 + 0.964i$
Analytic conductor: \(0.337367\)
Root analytic conductor: \(0.580833\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{676} (23, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 676,\ (\ :0),\ 0.265 + 0.964i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.445703084\)
\(L(\frac12)\) \(\approx\) \(1.445703084\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.866 + 0.5i)T \)
13 \( 1 \)
good3 \( 1 + (0.5 - 0.866i)T^{2} \)
5 \( 1 + iT - T^{2} \)
7 \( 1 + (-0.5 - 0.866i)T^{2} \)
11 \( 1 + (-0.5 + 0.866i)T^{2} \)
17 \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \)
19 \( 1 + (-0.5 - 0.866i)T^{2} \)
23 \( 1 + (0.5 - 0.866i)T^{2} \)
29 \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \)
31 \( 1 + T^{2} \)
37 \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \)
41 \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \)
43 \( 1 + (0.5 + 0.866i)T^{2} \)
47 \( 1 + T^{2} \)
53 \( 1 + T + T^{2} \)
59 \( 1 + (-0.5 - 0.866i)T^{2} \)
61 \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \)
67 \( 1 + (-0.5 + 0.866i)T^{2} \)
71 \( 1 + (-0.5 - 0.866i)T^{2} \)
73 \( 1 - iT - T^{2} \)
79 \( 1 - T^{2} \)
83 \( 1 + T^{2} \)
89 \( 1 + (1.73 - i)T + (0.5 - 0.866i)T^{2} \)
97 \( 1 + (1.73 + i)T + (0.5 + 0.866i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.80281161696015294612915734252, −9.826792627552941088005825290226, −8.830633622893291061633430475980, −8.033220507636001569377020174735, −6.76022627790139374268002653921, −5.71356026498068986380715965128, −4.95434884108137021917090736182, −4.16069121188017799988245779962, −2.80508990870431593667542644801, −1.53980948264443174890148283943, 2.54147346091484273542543942998, 3.32305686548256830028198989712, 4.42765494169131592724342385664, 5.60607804825502750833664267745, 6.52338077753115756403963101395, 7.01559081977551854781741787617, 8.083002544624275757686311452239, 9.036816206513830245398749773316, 10.12593760746847910774419718279, 11.20827509108990253289281719738

Graph of the $Z$-function along the critical line