Properties

Label 2-266910-1.1-c1-0-49
Degree $2$
Conductor $266910$
Sign $-1$
Analytic cond. $2131.28$
Root an. cond. $46.1658$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 5-s + 6-s − 7-s + 8-s + 9-s + 10-s − 4·11-s + 12-s − 2·13-s − 14-s + 15-s + 16-s + 2·17-s + 18-s + 4·19-s + 20-s − 21-s − 4·22-s + 8·23-s + 24-s + 25-s − 2·26-s + 27-s − 28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s − 0.377·7-s + 0.353·8-s + 1/3·9-s + 0.316·10-s − 1.20·11-s + 0.288·12-s − 0.554·13-s − 0.267·14-s + 0.258·15-s + 1/4·16-s + 0.485·17-s + 0.235·18-s + 0.917·19-s + 0.223·20-s − 0.218·21-s − 0.852·22-s + 1.66·23-s + 0.204·24-s + 1/5·25-s − 0.392·26-s + 0.192·27-s − 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 266910 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 266910 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(266910\)    =    \(2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41\)
Sign: $-1$
Analytic conductor: \(2131.28\)
Root analytic conductor: \(46.1658\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 266910,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 - T \)
5 \( 1 - T \)
7 \( 1 + T \)
31 \( 1 + T \)
41 \( 1 - T \)
good11 \( 1 + 4 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 - 8 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
37 \( 1 + 10 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 + 12 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.05425800031988, −12.70926212515438, −12.29951213020296, −11.69930093398636, −11.28189265111711, −10.57278579299644, −10.24435643304949, −9.991367352038099, −9.222417532742731, −8.940177138582902, −8.400691140386946, −7.626564948869277, −7.359742753428512, −7.062805432931462, −6.367951683818868, −5.681205562213961, −5.424778302948164, −4.827057628704633, −4.550768252778331, −3.531884151779686, −3.228233003461085, −2.862437339976343, −2.242561829789037, −1.653645945744498, −0.9464211583203394, 0, 0.9464211583203394, 1.653645945744498, 2.242561829789037, 2.862437339976343, 3.228233003461085, 3.531884151779686, 4.550768252778331, 4.827057628704633, 5.424778302948164, 5.681205562213961, 6.367951683818868, 7.062805432931462, 7.359742753428512, 7.626564948869277, 8.400691140386946, 8.940177138582902, 9.222417532742731, 9.991367352038099, 10.24435643304949, 10.57278579299644, 11.28189265111711, 11.69930093398636, 12.29951213020296, 12.70926212515438, 13.05425800031988

Graph of the $Z$-function along the critical line