| L(s) = 1 | + (−0.923 − 0.382i)2-s + (0.707 + 0.707i)4-s − 0.765·5-s − 1.41i·7-s + (−0.382 − 0.923i)8-s + (0.707 + 0.292i)10-s + (−0.541 + 1.30i)14-s + i·16-s − 0.765i·17-s + (−0.541 − 0.541i)20-s + 0.765·23-s − 0.414·25-s + (1.00 − i)28-s − 1.84·29-s + (0.382 − 0.923i)32-s + ⋯ |
| L(s) = 1 | + (−0.923 − 0.382i)2-s + (0.707 + 0.707i)4-s − 0.765·5-s − 1.41i·7-s + (−0.382 − 0.923i)8-s + (0.707 + 0.292i)10-s + (−0.541 + 1.30i)14-s + i·16-s − 0.765i·17-s + (−0.541 − 0.541i)20-s + 0.765·23-s − 0.414·25-s + (1.00 − i)28-s − 1.84·29-s + (0.382 − 0.923i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2664 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.923 + 0.382i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2664 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.923 + 0.382i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3983277879\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.3983277879\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.923 + 0.382i)T \) |
| 3 | \( 1 \) |
| 37 | \( 1 + iT \) |
| good | 5 | \( 1 + 0.765T + T^{2} \) |
| 7 | \( 1 + 1.41iT - T^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( 1 + 0.765iT - T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 - 0.765T + T^{2} \) |
| 29 | \( 1 + 1.84T + T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 - 0.765iT - T^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 + 1.41T + T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + 1.41T + T^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + 1.84iT - T^{2} \) |
| 97 | \( 1 - T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.813880145621067034141104759713, −7.74173705699010224570343995852, −7.43336657482870751956581663509, −6.90356441365518962552395577426, −5.72335723556042933521952395266, −4.39753638504606604987738396501, −3.79818255645462344592512164493, −2.95350266444204681305656460230, −1.59495025831135935076569858307, −0.35051348728392832652617393472,
1.60554284171153691975487844408, 2.59515814488071465684412498713, 3.64259185657015584920750699319, 4.92701168259458281436560953163, 5.71510188851245779474530181668, 6.33419632878224189316509463922, 7.31799296243971493500020565182, 7.941258978186715583313937411962, 8.643423653855809357065213851057, 9.145374038649773001488748856142