| L(s) = 1 | + (−0.5 − 0.866i)2-s + (0.309 + 0.951i)3-s + (−0.499 + 0.866i)4-s + (0.809 − 1.40i)5-s + (0.669 − 0.743i)6-s + 0.999·8-s + (−0.809 + 0.587i)9-s − 1.61·10-s + (−0.913 − 1.58i)11-s + (−0.978 − 0.207i)12-s + (−0.669 + 1.15i)13-s + (1.58 + 0.336i)15-s + (−0.5 − 0.866i)16-s + (0.913 + 0.406i)18-s + (0.809 + 1.40i)20-s + ⋯ |
| L(s) = 1 | + (−0.5 − 0.866i)2-s + (0.309 + 0.951i)3-s + (−0.499 + 0.866i)4-s + (0.809 − 1.40i)5-s + (0.669 − 0.743i)6-s + 0.999·8-s + (−0.809 + 0.587i)9-s − 1.61·10-s + (−0.913 − 1.58i)11-s + (−0.978 − 0.207i)12-s + (−0.669 + 1.15i)13-s + (1.58 + 0.336i)15-s + (−0.5 − 0.866i)16-s + (0.913 + 0.406i)18-s + (0.809 + 1.40i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2664 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.241 + 0.970i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2664 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.241 + 0.970i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9290825345\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.9290825345\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 + (-0.309 - 0.951i)T \) |
| 37 | \( 1 - T \) |
| good | 5 | \( 1 + (-0.809 + 1.40i)T + (-0.5 - 0.866i)T^{2} \) |
| 7 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.913 + 1.58i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (0.669 - 1.15i)T + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + (-0.978 + 1.69i)T + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.669 + 1.15i)T + (-0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (-0.809 + 1.40i)T + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (0.309 - 0.535i)T + (-0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.104 - 0.181i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.104 + 0.181i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - 1.82T + T^{2} \) |
| 79 | \( 1 + (0.309 + 0.535i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.135743522043452102391750703950, −8.251176450210206900720139513305, −7.999311107915085874401019371450, −6.32838739391992763442786605045, −5.40400403659690172624947547749, −4.65976552151714711388207523234, −4.14166845436148035299042341204, −2.82610032135065772124720752607, −2.22332667961727403194561022171, −0.67788803201675566530945216145,
1.57203341332703117838483429657, 2.47163693694877319272984647675, 3.30732178924789524794828732827, 5.13153101007297358000935113486, 5.47418036007325735980342503865, 6.58104855455828874666115215487, 7.09424555801130097684063748701, 7.48774048394743494706609361637, 8.171375365396823947627053153734, 9.332865681178720780685315254393