Properties

Label 2-2664-2664.2515-c0-0-7
Degree $2$
Conductor $2664$
Sign $-0.241 + 0.970i$
Analytic cond. $1.32950$
Root an. cond. $1.15304$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 − 0.866i)2-s + (0.309 + 0.951i)3-s + (−0.499 + 0.866i)4-s + (0.809 − 1.40i)5-s + (0.669 − 0.743i)6-s + 0.999·8-s + (−0.809 + 0.587i)9-s − 1.61·10-s + (−0.913 − 1.58i)11-s + (−0.978 − 0.207i)12-s + (−0.669 + 1.15i)13-s + (1.58 + 0.336i)15-s + (−0.5 − 0.866i)16-s + (0.913 + 0.406i)18-s + (0.809 + 1.40i)20-s + ⋯
L(s)  = 1  + (−0.5 − 0.866i)2-s + (0.309 + 0.951i)3-s + (−0.499 + 0.866i)4-s + (0.809 − 1.40i)5-s + (0.669 − 0.743i)6-s + 0.999·8-s + (−0.809 + 0.587i)9-s − 1.61·10-s + (−0.913 − 1.58i)11-s + (−0.978 − 0.207i)12-s + (−0.669 + 1.15i)13-s + (1.58 + 0.336i)15-s + (−0.5 − 0.866i)16-s + (0.913 + 0.406i)18-s + (0.809 + 1.40i)20-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2664 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.241 + 0.970i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2664 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.241 + 0.970i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2664\)    =    \(2^{3} \cdot 3^{2} \cdot 37\)
Sign: $-0.241 + 0.970i$
Analytic conductor: \(1.32950\)
Root analytic conductor: \(1.15304\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{2664} (2515, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2664,\ (\ :0),\ -0.241 + 0.970i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.9290825345\)
\(L(\frac12)\) \(\approx\) \(0.9290825345\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.5 + 0.866i)T \)
3 \( 1 + (-0.309 - 0.951i)T \)
37 \( 1 - T \)
good5 \( 1 + (-0.809 + 1.40i)T + (-0.5 - 0.866i)T^{2} \)
7 \( 1 + (0.5 - 0.866i)T^{2} \)
11 \( 1 + (0.913 + 1.58i)T + (-0.5 + 0.866i)T^{2} \)
13 \( 1 + (0.669 - 1.15i)T + (-0.5 - 0.866i)T^{2} \)
17 \( 1 - T^{2} \)
19 \( 1 - T^{2} \)
23 \( 1 + (-0.978 + 1.69i)T + (-0.5 - 0.866i)T^{2} \)
29 \( 1 + (0.669 + 1.15i)T + (-0.5 + 0.866i)T^{2} \)
31 \( 1 + (-0.809 + 1.40i)T + (-0.5 - 0.866i)T^{2} \)
41 \( 1 + (0.309 - 0.535i)T + (-0.5 - 0.866i)T^{2} \)
43 \( 1 + (0.5 - 0.866i)T^{2} \)
47 \( 1 + (0.5 - 0.866i)T^{2} \)
53 \( 1 - T^{2} \)
59 \( 1 + (0.5 + 0.866i)T^{2} \)
61 \( 1 + (-0.104 - 0.181i)T + (-0.5 + 0.866i)T^{2} \)
67 \( 1 + (-0.104 + 0.181i)T + (-0.5 - 0.866i)T^{2} \)
71 \( 1 - T^{2} \)
73 \( 1 - 1.82T + T^{2} \)
79 \( 1 + (0.309 + 0.535i)T + (-0.5 + 0.866i)T^{2} \)
83 \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \)
89 \( 1 - T^{2} \)
97 \( 1 + (0.5 - 0.866i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.135743522043452102391750703950, −8.251176450210206900720139513305, −7.999311107915085874401019371450, −6.32838739391992763442786605045, −5.40400403659690172624947547749, −4.65976552151714711388207523234, −4.14166845436148035299042341204, −2.82610032135065772124720752607, −2.22332667961727403194561022171, −0.67788803201675566530945216145, 1.57203341332703117838483429657, 2.47163693694877319272984647675, 3.30732178924789524794828732827, 5.13153101007297358000935113486, 5.47418036007325735980342503865, 6.58104855455828874666115215487, 7.09424555801130097684063748701, 7.48774048394743494706609361637, 8.171375365396823947627053153734, 9.332865681178720780685315254393

Graph of the $Z$-function along the critical line