Properties

Label 2-2664-1.1-c1-0-43
Degree $2$
Conductor $2664$
Sign $-1$
Analytic cond. $21.2721$
Root an. cond. $4.61217$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 7-s − 11-s − 6·13-s + 4·17-s − 8·19-s − 6·23-s − 25-s − 2·29-s − 4·31-s + 2·35-s − 37-s − 7·41-s + 2·43-s − 9·47-s − 6·49-s + 3·53-s − 2·55-s + 12·59-s + 4·61-s − 12·65-s − 7·71-s + 7·73-s − 77-s − 3·83-s + 8·85-s + 12·89-s + ⋯
L(s)  = 1  + 0.894·5-s + 0.377·7-s − 0.301·11-s − 1.66·13-s + 0.970·17-s − 1.83·19-s − 1.25·23-s − 1/5·25-s − 0.371·29-s − 0.718·31-s + 0.338·35-s − 0.164·37-s − 1.09·41-s + 0.304·43-s − 1.31·47-s − 6/7·49-s + 0.412·53-s − 0.269·55-s + 1.56·59-s + 0.512·61-s − 1.48·65-s − 0.830·71-s + 0.819·73-s − 0.113·77-s − 0.329·83-s + 0.867·85-s + 1.27·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2664 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2664 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2664\)    =    \(2^{3} \cdot 3^{2} \cdot 37\)
Sign: $-1$
Analytic conductor: \(21.2721\)
Root analytic conductor: \(4.61217\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2664,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
37 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \)
7 \( 1 - T + p T^{2} \)
11 \( 1 + T + p T^{2} \)
13 \( 1 + 6 T + p T^{2} \)
17 \( 1 - 4 T + p T^{2} \)
19 \( 1 + 8 T + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
41 \( 1 + 7 T + p T^{2} \)
43 \( 1 - 2 T + p T^{2} \)
47 \( 1 + 9 T + p T^{2} \)
53 \( 1 - 3 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 - 4 T + p T^{2} \)
67 \( 1 + p T^{2} \)
71 \( 1 + 7 T + p T^{2} \)
73 \( 1 - 7 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 + 3 T + p T^{2} \)
89 \( 1 - 12 T + p T^{2} \)
97 \( 1 + 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.392215727702935988482905100051, −7.78790307165276969482845597819, −6.93610596286674052907325458245, −6.09037614955138614512431406118, −5.35667365720479356016286420004, −4.67375669110578511814790030096, −3.62376221698954049890975125760, −2.32752817979750411282892328426, −1.85774356352190049046929099208, 0, 1.85774356352190049046929099208, 2.32752817979750411282892328426, 3.62376221698954049890975125760, 4.67375669110578511814790030096, 5.35667365720479356016286420004, 6.09037614955138614512431406118, 6.93610596286674052907325458245, 7.78790307165276969482845597819, 8.392215727702935988482905100051

Graph of the $Z$-function along the critical line