Properties

Label 2-2664-1.1-c1-0-14
Degree $2$
Conductor $2664$
Sign $1$
Analytic cond. $21.2721$
Root an. cond. $4.61217$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·5-s − 7-s + 3·11-s − 5·13-s − 7·17-s + 5·19-s − 23-s + 11·25-s + 8·29-s + 6·31-s − 4·35-s + 37-s + 2·41-s + 12·43-s + 2·47-s − 6·49-s + 53-s + 12·55-s + 4·59-s + 14·61-s − 20·65-s + 14·67-s − 4·71-s − 11·73-s − 3·77-s + 10·79-s − 5·83-s + ⋯
L(s)  = 1  + 1.78·5-s − 0.377·7-s + 0.904·11-s − 1.38·13-s − 1.69·17-s + 1.14·19-s − 0.208·23-s + 11/5·25-s + 1.48·29-s + 1.07·31-s − 0.676·35-s + 0.164·37-s + 0.312·41-s + 1.82·43-s + 0.291·47-s − 6/7·49-s + 0.137·53-s + 1.61·55-s + 0.520·59-s + 1.79·61-s − 2.48·65-s + 1.71·67-s − 0.474·71-s − 1.28·73-s − 0.341·77-s + 1.12·79-s − 0.548·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2664 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2664 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2664\)    =    \(2^{3} \cdot 3^{2} \cdot 37\)
Sign: $1$
Analytic conductor: \(21.2721\)
Root analytic conductor: \(4.61217\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2664,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.515638803\)
\(L(\frac12)\) \(\approx\) \(2.515638803\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
37 \( 1 - T \)
good5 \( 1 - 4 T + p T^{2} \) 1.5.ae
7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + 5 T + p T^{2} \) 1.13.f
17 \( 1 + 7 T + p T^{2} \) 1.17.h
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 + T + p T^{2} \) 1.23.b
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 - T + p T^{2} \) 1.53.ab
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 5 T + p T^{2} \) 1.83.f
89 \( 1 - 9 T + p T^{2} \) 1.89.aj
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.170919281527884387381532166892, −8.238413206921816077708675930179, −6.93103230973337401103812300140, −6.65969419424467214117062769830, −5.81739413469973915405265897976, −5.02471432618468510430501908595, −4.23965014562456207446590174902, −2.74420683922802619411355240930, −2.28704150430081549709622153078, −1.03487491472005502033801272705, 1.03487491472005502033801272705, 2.28704150430081549709622153078, 2.74420683922802619411355240930, 4.23965014562456207446590174902, 5.02471432618468510430501908595, 5.81739413469973915405265897976, 6.65969419424467214117062769830, 6.93103230973337401103812300140, 8.238413206921816077708675930179, 9.170919281527884387381532166892

Graph of the $Z$-function along the critical line