Properties

Label 2-26520-1.1-c1-0-19
Degree $2$
Conductor $26520$
Sign $-1$
Analytic cond. $211.763$
Root an. cond. $14.5520$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s + 9-s + 2·11-s − 13-s − 15-s − 17-s − 8·19-s + 6·23-s + 25-s + 27-s − 4·31-s + 2·33-s + 2·37-s − 39-s + 4·41-s − 4·43-s − 45-s − 7·49-s − 51-s − 6·53-s − 2·55-s − 8·57-s + 4·59-s + 8·61-s + 65-s + 8·67-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s + 1/3·9-s + 0.603·11-s − 0.277·13-s − 0.258·15-s − 0.242·17-s − 1.83·19-s + 1.25·23-s + 1/5·25-s + 0.192·27-s − 0.718·31-s + 0.348·33-s + 0.328·37-s − 0.160·39-s + 0.624·41-s − 0.609·43-s − 0.149·45-s − 49-s − 0.140·51-s − 0.824·53-s − 0.269·55-s − 1.05·57-s + 0.520·59-s + 1.02·61-s + 0.124·65-s + 0.977·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 26520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 26520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(26520\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17\)
Sign: $-1$
Analytic conductor: \(211.763\)
Root analytic conductor: \(14.5520\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{26520} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 26520,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 + T \)
13 \( 1 + T \)
17 \( 1 + T \)
good7 \( 1 + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
19 \( 1 + 8 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 - 4 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 - 8 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 + 4 T + p T^{2} \)
73 \( 1 + p T^{2} \)
79 \( 1 - 10 T + p T^{2} \)
83 \( 1 - 8 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 - 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.37710354752704, −14.88058366915110, −14.68765393150617, −14.10644807037498, −13.30944186861951, −12.85689702248342, −12.56091125357322, −11.77281437902758, −11.15370829970651, −10.82432271391095, −10.08755255603784, −9.447355701856136, −8.916050475159182, −8.500632550175890, −7.868043949097387, −7.283541471609787, −6.573793994103624, −6.306177564738137, −5.174436810576451, −4.697577760144068, −3.946620108053147, −3.520825956752962, −2.613982219230668, −2.025314805791885, −1.095941194279214, 0, 1.095941194279214, 2.025314805791885, 2.613982219230668, 3.520825956752962, 3.946620108053147, 4.697577760144068, 5.174436810576451, 6.306177564738137, 6.573793994103624, 7.283541471609787, 7.868043949097387, 8.500632550175890, 8.916050475159182, 9.447355701856136, 10.08755255603784, 10.82432271391095, 11.15370829970651, 11.77281437902758, 12.56091125357322, 12.85689702248342, 13.30944186861951, 14.10644807037498, 14.68765393150617, 14.88058366915110, 15.37710354752704

Graph of the $Z$-function along the critical line