Properties

Label 2-2646-63.58-c1-0-33
Degree $2$
Conductor $2646$
Sign $-0.242 + 0.970i$
Analytic cond. $21.1284$
Root an. cond. $4.59656$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + (−0.686 − 1.18i)5-s + 8-s + (−0.686 − 1.18i)10-s + (2.18 − 3.78i)11-s + (−1 + 1.73i)13-s + 16-s + (−2.18 − 3.78i)17-s + (−2.5 + 4.33i)19-s + (−0.686 − 1.18i)20-s + (2.18 − 3.78i)22-s + (−3.68 − 6.38i)23-s + (1.55 − 2.69i)25-s + (−1 + 1.73i)26-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s + (−0.306 − 0.531i)5-s + 0.353·8-s + (−0.216 − 0.375i)10-s + (0.659 − 1.14i)11-s + (−0.277 + 0.480i)13-s + 0.250·16-s + (−0.530 − 0.918i)17-s + (−0.573 + 0.993i)19-s + (−0.153 − 0.265i)20-s + (0.466 − 0.807i)22-s + (−0.768 − 1.33i)23-s + (0.311 − 0.539i)25-s + (−0.196 + 0.339i)26-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2646 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.242 + 0.970i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2646 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.242 + 0.970i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2646\)    =    \(2 \cdot 3^{3} \cdot 7^{2}\)
Sign: $-0.242 + 0.970i$
Analytic conductor: \(21.1284\)
Root analytic conductor: \(4.59656\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2646} (1549, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2646,\ (\ :1/2),\ -0.242 + 0.970i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.141849899\)
\(L(\frac12)\) \(\approx\) \(2.141849899\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 + (0.686 + 1.18i)T + (-2.5 + 4.33i)T^{2} \)
11 \( 1 + (-2.18 + 3.78i)T + (-5.5 - 9.52i)T^{2} \)
13 \( 1 + (1 - 1.73i)T + (-6.5 - 11.2i)T^{2} \)
17 \( 1 + (2.18 + 3.78i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (2.5 - 4.33i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (3.68 + 6.38i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (-1.37 - 2.37i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 - 2T + 31T^{2} \)
37 \( 1 + (1 - 1.73i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (-5.18 + 8.98i)T + (-20.5 - 35.5i)T^{2} \)
43 \( 1 + (4.55 + 7.89i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 + 47T^{2} \)
53 \( 1 + (-1.37 - 2.37i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + 7.11T + 59T^{2} \)
61 \( 1 + 14.1T + 61T^{2} \)
67 \( 1 - 15.1T + 67T^{2} \)
71 \( 1 + 10.1T + 71T^{2} \)
73 \( 1 + (-2.55 - 4.43i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 - 12.1T + 79T^{2} \)
83 \( 1 + (2.74 + 4.75i)T + (-41.5 + 71.8i)T^{2} \)
89 \( 1 + (-1.62 + 2.81i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (4.55 + 7.89i)T + (-48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.622427398948413256357149748971, −7.949950029915267210156224862660, −6.86735012192615331337710065839, −6.32327041889965624978758160024, −5.49382047581327535156271645130, −4.52129708674388724569594234961, −4.03228505403508083866094026680, −2.99689629495809793551049072367, −1.93677687423672463363214389870, −0.52656568193688303610039582560, 1.56139984715247776059631948601, 2.56567233978170825614315212305, 3.52789383091931251870990051728, 4.34519895255514956191437524721, 4.99048397294320159524463810007, 6.16349442474585514889500394803, 6.62950265902296930080071014261, 7.48929511951714680379576858910, 8.043768657874270741903740185222, 9.212724387513099343043746241921

Graph of the $Z$-function along the critical line