Properties

Label 2-2646-63.16-c1-0-36
Degree $2$
Conductor $2646$
Sign $0.999 + 0.0129i$
Analytic cond. $21.1284$
Root an. cond. $4.59656$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.5 + 0.866i)2-s + (−0.499 + 0.866i)4-s + 3.44·5-s − 0.999·8-s + (1.72 + 2.98i)10-s − 2·11-s + (−2.44 − 4.24i)13-s + (−0.5 − 0.866i)16-s + (−1 − 1.73i)17-s + (3.72 − 6.45i)19-s + (−1.72 + 2.98i)20-s + (−1 − 1.73i)22-s + 23-s + 6.89·25-s + (2.44 − 4.24i)26-s + ⋯
L(s)  = 1  + (0.353 + 0.612i)2-s + (−0.249 + 0.433i)4-s + 1.54·5-s − 0.353·8-s + (0.545 + 0.944i)10-s − 0.603·11-s + (−0.679 − 1.17i)13-s + (−0.125 − 0.216i)16-s + (−0.242 − 0.420i)17-s + (0.854 − 1.48i)19-s + (−0.385 + 0.667i)20-s + (−0.213 − 0.369i)22-s + 0.208·23-s + 1.37·25-s + (0.480 − 0.832i)26-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2646 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0129i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2646 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 + 0.0129i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2646\)    =    \(2 \cdot 3^{3} \cdot 7^{2}\)
Sign: $0.999 + 0.0129i$
Analytic conductor: \(21.1284\)
Root analytic conductor: \(4.59656\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2646} (667, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2646,\ (\ :1/2),\ 0.999 + 0.0129i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.637457135\)
\(L(\frac12)\) \(\approx\) \(2.637457135\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.5 - 0.866i)T \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 - 3.44T + 5T^{2} \)
11 \( 1 + 2T + 11T^{2} \)
13 \( 1 + (2.44 + 4.24i)T + (-6.5 + 11.2i)T^{2} \)
17 \( 1 + (1 + 1.73i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (-3.72 + 6.45i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 - T + 23T^{2} \)
29 \( 1 + (-1.44 + 2.51i)T + (-14.5 - 25.1i)T^{2} \)
31 \( 1 + (-3 + 5.19i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + (-3.89 + 6.75i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (-4.89 - 8.48i)T + (-20.5 + 35.5i)T^{2} \)
43 \( 1 + (-1.44 + 2.51i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + (-4.89 - 8.48i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + (0.550 + 0.953i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + (-1 + 1.73i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (-5.72 - 9.91i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (-1.55 + 2.68i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + 9.89T + 71T^{2} \)
73 \( 1 + (-1.44 - 2.51i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (3.94 + 6.84i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + (1 - 1.73i)T + (-41.5 - 71.8i)T^{2} \)
89 \( 1 + (-3.55 + 6.14i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (3.44 - 5.97i)T + (-48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.998550475214449266099758705973, −7.85957003928350219373722051672, −7.35221128636932316650741265365, −6.39797428085207380519831860006, −5.69747995975721397881395821644, −5.18651390174391905444547937727, −4.41186245535013464796791299862, −2.75324408627812732753980893456, −2.57793306275771064184363887089, −0.78372313184061596955357122483, 1.35394396874967684758053898140, 2.10842928785853012845684540391, 2.92862015896377063784862479057, 4.07716418972361414240284614163, 5.05321508738326372343903427207, 5.60797095831921694116980187079, 6.39085839089398548989726409934, 7.15850980680840514532411217176, 8.297649622562028412962528477874, 9.119431100380605397754153668502

Graph of the $Z$-function along the critical line