Properties

Label 2-2646-63.16-c1-0-28
Degree $2$
Conductor $2646$
Sign $0.678 + 0.734i$
Analytic cond. $21.1284$
Root an. cond. $4.59656$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 − 0.866i)2-s + (−0.499 + 0.866i)4-s + 3·5-s + 0.999·8-s + (−1.5 − 2.59i)10-s + 6·11-s + (−1 − 1.73i)13-s + (−0.5 − 0.866i)16-s + (3 + 5.19i)17-s + (3.5 − 6.06i)19-s + (−1.49 + 2.59i)20-s + (−3 − 5.19i)22-s − 3·23-s + 4·25-s + (−0.999 + 1.73i)26-s + ⋯
L(s)  = 1  + (−0.353 − 0.612i)2-s + (−0.249 + 0.433i)4-s + 1.34·5-s + 0.353·8-s + (−0.474 − 0.821i)10-s + 1.80·11-s + (−0.277 − 0.480i)13-s + (−0.125 − 0.216i)16-s + (0.727 + 1.26i)17-s + (0.802 − 1.39i)19-s + (−0.335 + 0.580i)20-s + (−0.639 − 1.10i)22-s − 0.625·23-s + 0.800·25-s + (−0.196 + 0.339i)26-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2646 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.678 + 0.734i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2646 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.678 + 0.734i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2646\)    =    \(2 \cdot 3^{3} \cdot 7^{2}\)
Sign: $0.678 + 0.734i$
Analytic conductor: \(21.1284\)
Root analytic conductor: \(4.59656\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2646} (667, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2646,\ (\ :1/2),\ 0.678 + 0.734i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.247104561\)
\(L(\frac12)\) \(\approx\) \(2.247104561\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.5 + 0.866i)T \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 - 3T + 5T^{2} \)
11 \( 1 - 6T + 11T^{2} \)
13 \( 1 + (1 + 1.73i)T + (-6.5 + 11.2i)T^{2} \)
17 \( 1 + (-3 - 5.19i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (-3.5 + 6.06i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + 3T + 23T^{2} \)
29 \( 1 + (-3 + 5.19i)T + (-14.5 - 25.1i)T^{2} \)
31 \( 1 + (1 - 1.73i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + (1 - 1.73i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (-20.5 + 35.5i)T^{2} \)
43 \( 1 + (1 - 1.73i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + (-3 - 5.19i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (2.5 + 4.33i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (4 - 6.92i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + 3T + 71T^{2} \)
73 \( 1 + (1 + 1.73i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (2.5 + 4.33i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + (-6 + 10.3i)T + (-41.5 - 71.8i)T^{2} \)
89 \( 1 + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (1 - 1.73i)T + (-48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.041264809231333164630450434066, −8.231977883705688061921164225430, −7.23491563636052255265343045813, −6.34706128620273844702669308203, −5.80955960064226799843100178378, −4.75495137477734491534799863675, −3.80443684959458613798296070366, −2.85339256170297661973759243349, −1.81903618423166631789326428822, −1.04541310225344275330343550942, 1.16858505756055753514953615408, 1.90944253051459574682461437155, 3.29709314339897220783545263440, 4.33440100506565243723024952761, 5.40982439305674428384499821208, 5.88026823915732010319848126911, 6.72192966636031351955942389074, 7.23182930292208982988464314439, 8.281190965410225456229977912237, 9.119233135315383801044587941028

Graph of the $Z$-function along the critical line