L(s) = 1 | − i·2-s − 4-s + 5-s + i·8-s − i·9-s − i·10-s − 13-s + 16-s + (−1 + i)17-s − 18-s − 20-s + 25-s + i·26-s + 2i·29-s − i·32-s + ⋯ |
L(s) = 1 | − i·2-s − 4-s + 5-s + i·8-s − i·9-s − i·10-s − 13-s + 16-s + (−1 + i)17-s − 18-s − 20-s + 25-s + i·26-s + 2i·29-s − i·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 260 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.256 + 0.966i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 260 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.256 + 0.966i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7529341310\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7529341310\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 5 | \( 1 - T \) |
| 13 | \( 1 + T \) |
good | 3 | \( 1 + iT^{2} \) |
| 7 | \( 1 - T^{2} \) |
| 11 | \( 1 + iT^{2} \) |
| 17 | \( 1 + (1 - i)T - iT^{2} \) |
| 19 | \( 1 + iT^{2} \) |
| 23 | \( 1 - iT^{2} \) |
| 29 | \( 1 - 2iT - T^{2} \) |
| 31 | \( 1 - iT^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 + (1 + i)T + iT^{2} \) |
| 43 | \( 1 - iT^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + (1 - i)T - iT^{2} \) |
| 59 | \( 1 - iT^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 - iT^{2} \) |
| 73 | \( 1 + 2iT - T^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (1 + i)T + iT^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.23150478996913530495027146426, −10.92493001509926890157433226094, −10.21572661603365946786259719149, −9.269196707780356329923341568476, −8.674766221919918008550416064948, −6.97217871667529371634475740297, −5.77247295088478574941748985570, −4.60645839685577687682105807730, −3.19491018413712777771327149791, −1.81103030117855911204439404581,
2.43061537449341308707134139626, 4.56557210181478800039033333937, 5.32889621241390485713710346214, 6.46760654973349580082843120313, 7.41235402654655989524850721661, 8.446478796280666770845829155343, 9.558298903833028026275004216819, 10.11698450147350455664565324277, 11.45088335021371212431244632391, 12.82251058420569389269467634263