L(s) = 1 | + (−1.32 − 0.487i)2-s + (0.396 + 0.396i)3-s + (1.52 + 1.29i)4-s + (2.02 − 0.951i)5-s + (−0.333 − 0.720i)6-s + (0.477 − 0.477i)7-s + (−1.39 − 2.46i)8-s − 2.68i·9-s + (−3.15 + 0.277i)10-s + 4.12i·11-s + (0.0920 + 1.11i)12-s + (0.707 − 0.707i)13-s + (−0.865 + 0.401i)14-s + (1.18 + 0.425i)15-s + (0.653 + 3.94i)16-s + (−0.282 − 0.282i)17-s + ⋯ |
L(s) = 1 | + (−0.938 − 0.344i)2-s + (0.229 + 0.229i)3-s + (0.762 + 0.646i)4-s + (0.904 − 0.425i)5-s + (−0.136 − 0.293i)6-s + (0.180 − 0.180i)7-s + (−0.493 − 0.869i)8-s − 0.895i·9-s + (−0.996 + 0.0877i)10-s + 1.24i·11-s + (0.0265 + 0.322i)12-s + (0.196 − 0.196i)13-s + (−0.231 + 0.107i)14-s + (0.304 + 0.109i)15-s + (0.163 + 0.986i)16-s + (−0.0685 − 0.0685i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 260 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.879 + 0.475i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 260 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.879 + 0.475i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.03935 - 0.262981i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.03935 - 0.262981i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.32 + 0.487i)T \) |
| 5 | \( 1 + (-2.02 + 0.951i)T \) |
| 13 | \( 1 + (-0.707 + 0.707i)T \) |
good | 3 | \( 1 + (-0.396 - 0.396i)T + 3iT^{2} \) |
| 7 | \( 1 + (-0.477 + 0.477i)T - 7iT^{2} \) |
| 11 | \( 1 - 4.12iT - 11T^{2} \) |
| 17 | \( 1 + (0.282 + 0.282i)T + 17iT^{2} \) |
| 19 | \( 1 - 6.79T + 19T^{2} \) |
| 23 | \( 1 + (4.18 + 4.18i)T + 23iT^{2} \) |
| 29 | \( 1 + 2.26iT - 29T^{2} \) |
| 31 | \( 1 - 6.38iT - 31T^{2} \) |
| 37 | \( 1 + (-3.49 - 3.49i)T + 37iT^{2} \) |
| 41 | \( 1 - 3.13T + 41T^{2} \) |
| 43 | \( 1 + (3.14 + 3.14i)T + 43iT^{2} \) |
| 47 | \( 1 + (2.10 - 2.10i)T - 47iT^{2} \) |
| 53 | \( 1 + (3.55 - 3.55i)T - 53iT^{2} \) |
| 59 | \( 1 + 11.1T + 59T^{2} \) |
| 61 | \( 1 - 1.24T + 61T^{2} \) |
| 67 | \( 1 + (8.43 - 8.43i)T - 67iT^{2} \) |
| 71 | \( 1 + 14.8iT - 71T^{2} \) |
| 73 | \( 1 + (3.39 - 3.39i)T - 73iT^{2} \) |
| 79 | \( 1 + 10.1T + 79T^{2} \) |
| 83 | \( 1 + (-0.412 - 0.412i)T + 83iT^{2} \) |
| 89 | \( 1 - 16.9iT - 89T^{2} \) |
| 97 | \( 1 + (2.59 + 2.59i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.02183498593856491921789157217, −10.63532593979738725237825157939, −9.756366458245040325311547377938, −9.356140947311728598444264846279, −8.259541605499303622175648826630, −7.12883830890816778441300459054, −6.06305160613233910973823273041, −4.47664098491548314578664405285, −2.90299823270037892202226704283, −1.38604682891880942599804176383,
1.65174822970420910460536596641, 2.97450702457495152303342134628, 5.39230722563172931758504175585, 6.07563306255237920338817323239, 7.35185505740514364983977482459, 8.149540351262292926703394751007, 9.193075497377490376733316488652, 9.995716063731118104100301759081, 11.01307566099987820170712747167, 11.61191804595689228964817626365