L(s) = 1 | + (0.0473 + 0.0820i)3-s − i·5-s + (0.716 + 0.413i)7-s + (1.49 − 2.59i)9-s + (1.5 − 0.866i)11-s + (3.32 + 1.40i)13-s + (0.0820 − 0.0473i)15-s + (0.716 − 1.24i)17-s + (−0.926 − 0.534i)19-s + 0.0783i·21-s + (1.54 + 2.67i)23-s − 25-s + 0.567·27-s + (−3.72 − 6.45i)29-s + 5.84i·31-s + ⋯ |
L(s) = 1 | + (0.0273 + 0.0473i)3-s − 0.447i·5-s + (0.270 + 0.156i)7-s + (0.498 − 0.863i)9-s + (0.452 − 0.261i)11-s + (0.921 + 0.388i)13-s + (0.0211 − 0.0122i)15-s + (0.173 − 0.300i)17-s + (−0.212 − 0.122i)19-s + 0.0171i·21-s + (0.321 + 0.557i)23-s − 0.200·25-s + 0.109·27-s + (−0.692 − 1.19i)29-s + 1.04i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 260 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.916 + 0.400i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 260 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.916 + 0.400i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.34660 - 0.281263i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.34660 - 0.281263i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + iT \) |
| 13 | \( 1 + (-3.32 - 1.40i)T \) |
good | 3 | \( 1 + (-0.0473 - 0.0820i)T + (-1.5 + 2.59i)T^{2} \) |
| 7 | \( 1 + (-0.716 - 0.413i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.5 + 0.866i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-0.716 + 1.24i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (0.926 + 0.534i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.54 - 2.67i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (3.72 + 6.45i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 5.84iT - 31T^{2} \) |
| 37 | \( 1 + (-0.851 + 0.491i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (3.69 - 2.13i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (4.77 - 8.26i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 3.46iT - 47T^{2} \) |
| 53 | \( 1 - 0.334T + 53T^{2} \) |
| 59 | \( 1 + (9.98 + 5.76i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (1.35 - 2.35i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (11.9 - 6.87i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-8.46 - 4.88i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 11.1iT - 73T^{2} \) |
| 79 | \( 1 + 0.252T + 79T^{2} \) |
| 83 | \( 1 - 5.67iT - 83T^{2} \) |
| 89 | \( 1 + (-3.98 + 2.29i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-8.25 - 4.76i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.84049490929472970409911396743, −11.18981923110417809546115770882, −9.832021088356583630332103060534, −9.084357610153755044413660160724, −8.181359639823472124613913810683, −6.87322533062007821432925684744, −5.91106755076808276128671448685, −4.55419633479545802237819638477, −3.43960957350700788253176807088, −1.38241620604394333990585995176,
1.79395502158262866374458092708, 3.50528892861905740085357026812, 4.76084435262839747445338023786, 6.06386400431679203068541683356, 7.17818191219213020635138124651, 8.068766365330817519317633891550, 9.146592567455175889442491432703, 10.45806954086209175152344134340, 10.85327841083357220980102835346, 12.03175988299041390297454249237