L(s) = 1 | + (−0.800 − 1.38i)3-s + i·5-s + (3.75 + 2.16i)7-s + (0.219 − 0.380i)9-s + (1.5 − 0.866i)11-s + (−3.11 − 1.81i)13-s + (1.38 − 0.800i)15-s + (3.75 − 6.49i)17-s + (4.65 + 2.68i)19-s − 6.93i·21-s + (−0.580 − 1.00i)23-s − 25-s − 5.50·27-s + (1.01 + 1.75i)29-s + 7.86i·31-s + ⋯ |
L(s) = 1 | + (−0.461 − 0.800i)3-s + 0.447i·5-s + (1.41 + 0.818i)7-s + (0.0732 − 0.126i)9-s + (0.452 − 0.261i)11-s + (−0.863 − 0.504i)13-s + (0.357 − 0.206i)15-s + (0.909 − 1.57i)17-s + (1.06 + 0.616i)19-s − 1.51i·21-s + (−0.121 − 0.209i)23-s − 0.200·25-s − 1.05·27-s + (0.187 + 0.325i)29-s + 1.41i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 260 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.856 + 0.515i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 260 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.856 + 0.515i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.22297 - 0.339725i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.22297 - 0.339725i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 - iT \) |
| 13 | \( 1 + (3.11 + 1.81i)T \) |
good | 3 | \( 1 + (0.800 + 1.38i)T + (-1.5 + 2.59i)T^{2} \) |
| 7 | \( 1 + (-3.75 - 2.16i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.5 + 0.866i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-3.75 + 6.49i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-4.65 - 2.68i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (0.580 + 1.00i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.01 - 1.75i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 7.86iT - 31T^{2} \) |
| 37 | \( 1 + (8.25 - 4.76i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-6.69 + 3.86i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.09 + 3.62i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 3.46iT - 47T^{2} \) |
| 53 | \( 1 + 12.6T + 53T^{2} \) |
| 59 | \( 1 + (-5.49 - 3.17i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (1.85 - 3.20i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (4.55 - 2.63i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (10.8 + 6.25i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 5.23iT - 73T^{2} \) |
| 79 | \( 1 + 8.16T + 79T^{2} \) |
| 83 | \( 1 + 0.456iT - 83T^{2} \) |
| 89 | \( 1 + (11.4 - 6.63i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (2.43 + 1.40i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.05507265919353402136166020535, −11.29377016224982480029539199269, −10.07069151761804094447778347421, −8.946230427809921154683229676980, −7.71823335052398096655621167211, −7.12735531189307262137125887124, −5.75218331614347540317694535222, −4.97294123988410212046570306359, −3.00947218793149423274226479325, −1.39986556318128548056087364612,
1.61517614365116339326544243150, 4.03421503065901668692345532547, 4.69644018803483543420545100368, 5.66556952044906277306580885754, 7.35971228430253325973728279824, 8.060284052732901410640100640258, 9.439535576186151345447233139200, 10.20617567214207872827760330233, 11.14334714102627786369478517717, 11.78403443584097281829289959697