Properties

Label 2-26-13.9-c7-0-6
Degree $2$
Conductor $26$
Sign $-0.999 + 0.0326i$
Analytic cond. $8.12201$
Root an. cond. $2.84991$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (4 − 6.92i)2-s + (19.9 − 34.6i)3-s + (−31.9 − 55.4i)4-s − 323.·5-s + (−159. − 277. i)6-s + (−284. − 492. i)7-s − 511.·8-s + (294. + 509. i)9-s + (−1.29e3 + 2.24e3i)10-s + (119. − 206. i)11-s − 2.55e3·12-s + (−5.81e3 − 5.37e3i)13-s − 4.54e3·14-s + (−6.47e3 + 1.12e4i)15-s + (−2.04e3 + 3.54e3i)16-s + (−1.02e4 − 1.77e4i)17-s + ⋯
L(s)  = 1  + (0.353 − 0.612i)2-s + (0.427 − 0.740i)3-s + (−0.249 − 0.433i)4-s − 1.15·5-s + (−0.302 − 0.523i)6-s + (−0.313 − 0.542i)7-s − 0.353·8-s + (0.134 + 0.232i)9-s + (−0.409 + 0.709i)10-s + (0.0269 − 0.0467i)11-s − 0.427·12-s + (−0.734 − 0.678i)13-s − 0.443·14-s + (−0.495 + 0.857i)15-s + (−0.125 + 0.216i)16-s + (−0.505 − 0.874i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 26 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.0326i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 26 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.999 + 0.0326i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(26\)    =    \(2 \cdot 13\)
Sign: $-0.999 + 0.0326i$
Analytic conductor: \(8.12201\)
Root analytic conductor: \(2.84991\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{26} (9, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 26,\ (\ :7/2),\ -0.999 + 0.0326i)\)

Particular Values

\(L(4)\) \(\approx\) \(0.0209038 - 1.27935i\)
\(L(\frac12)\) \(\approx\) \(0.0209038 - 1.27935i\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-4 + 6.92i)T \)
13 \( 1 + (5.81e3 + 5.37e3i)T \)
good3 \( 1 + (-19.9 + 34.6i)T + (-1.09e3 - 1.89e3i)T^{2} \)
5 \( 1 + 323.T + 7.81e4T^{2} \)
7 \( 1 + (284. + 492. i)T + (-4.11e5 + 7.13e5i)T^{2} \)
11 \( 1 + (-119. + 206. i)T + (-9.74e6 - 1.68e7i)T^{2} \)
17 \( 1 + (1.02e4 + 1.77e4i)T + (-2.05e8 + 3.55e8i)T^{2} \)
19 \( 1 + (-4.82e3 - 8.35e3i)T + (-4.46e8 + 7.74e8i)T^{2} \)
23 \( 1 + (-3.91e4 + 6.77e4i)T + (-1.70e9 - 2.94e9i)T^{2} \)
29 \( 1 + (-6.94e4 + 1.20e5i)T + (-8.62e9 - 1.49e10i)T^{2} \)
31 \( 1 - 1.60e5T + 2.75e10T^{2} \)
37 \( 1 + (-7.64e4 + 1.32e5i)T + (-4.74e10 - 8.22e10i)T^{2} \)
41 \( 1 + (9.27e4 - 1.60e5i)T + (-9.73e10 - 1.68e11i)T^{2} \)
43 \( 1 + (4.25e4 + 7.36e4i)T + (-1.35e11 + 2.35e11i)T^{2} \)
47 \( 1 + 1.20e6T + 5.06e11T^{2} \)
53 \( 1 + 6.65e5T + 1.17e12T^{2} \)
59 \( 1 + (-1.24e6 - 2.15e6i)T + (-1.24e12 + 2.15e12i)T^{2} \)
61 \( 1 + (-1.52e6 - 2.63e6i)T + (-1.57e12 + 2.72e12i)T^{2} \)
67 \( 1 + (-1.93e5 + 3.35e5i)T + (-3.03e12 - 5.24e12i)T^{2} \)
71 \( 1 + (1.84e6 + 3.18e6i)T + (-4.54e12 + 7.87e12i)T^{2} \)
73 \( 1 - 1.57e6T + 1.10e13T^{2} \)
79 \( 1 - 2.29e6T + 1.92e13T^{2} \)
83 \( 1 + 7.93e6T + 2.71e13T^{2} \)
89 \( 1 + (4.07e6 - 7.05e6i)T + (-2.21e13 - 3.83e13i)T^{2} \)
97 \( 1 + (-6.69e5 - 1.16e6i)T + (-4.03e13 + 6.99e13i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.05520489389839023901463150020, −13.72712299015936029513323788485, −12.72046656072473499417664010058, −11.61615606252643888825590028128, −10.17468374745028682753468871026, −8.220528630867470532598130958500, −7.03402526272987570584172732105, −4.52559608014640163369828050410, −2.78085853788222646183678354315, −0.56010130648833225088231556862, 3.39338269765668062466063672318, 4.68103046049712956632384351648, 6.81168357888632453050945433734, 8.375326073932773628086061679582, 9.601381088606370128908176747864, 11.54536634732657975384229296971, 12.72628481876810223705055795669, 14.46619070072303532516761427245, 15.41967767633748820432243804053, 15.92341939711065749443798217382

Graph of the $Z$-function along the critical line