| L(s) = 1 | + (1.73 + i)2-s + (−3.93 + 6.82i)3-s + (1.99 + 3.46i)4-s − 3.30i·5-s + (−13.6 + 7.87i)6-s + (27.1 − 15.6i)7-s + 7.99i·8-s + (−17.5 − 30.3i)9-s + (3.30 − 5.72i)10-s + (13.5 + 7.80i)11-s − 31.5·12-s + (−45.2 + 12.2i)13-s + 62.7·14-s + (22.5 + 13.0i)15-s + (−8 + 13.8i)16-s + (−53.8 − 93.2i)17-s + ⋯ |
| L(s) = 1 | + (0.612 + 0.353i)2-s + (−0.757 + 1.31i)3-s + (0.249 + 0.433i)4-s − 0.295i·5-s + (−0.928 + 0.535i)6-s + (1.46 − 0.847i)7-s + 0.353i·8-s + (−0.648 − 1.12i)9-s + (0.104 − 0.181i)10-s + (0.370 + 0.213i)11-s − 0.757·12-s + (−0.965 + 0.260i)13-s + 1.19·14-s + (0.388 + 0.224i)15-s + (−0.125 + 0.216i)16-s + (−0.768 − 1.33i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 26 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.244 - 0.969i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 26 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.244 - 0.969i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(1.07551 + 0.838075i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.07551 + 0.838075i\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-1.73 - i)T \) |
| 13 | \( 1 + (45.2 - 12.2i)T \) |
| good | 3 | \( 1 + (3.93 - 6.82i)T + (-13.5 - 23.3i)T^{2} \) |
| 5 | \( 1 + 3.30iT - 125T^{2} \) |
| 7 | \( 1 + (-27.1 + 15.6i)T + (171.5 - 297. i)T^{2} \) |
| 11 | \( 1 + (-13.5 - 7.80i)T + (665.5 + 1.15e3i)T^{2} \) |
| 17 | \( 1 + (53.8 + 93.2i)T + (-2.45e3 + 4.25e3i)T^{2} \) |
| 19 | \( 1 + (-52.6 + 30.3i)T + (3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (62.1 - 107. i)T + (-6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 + (29.1 - 50.4i)T + (-1.21e4 - 2.11e4i)T^{2} \) |
| 31 | \( 1 + 200. iT - 2.97e4T^{2} \) |
| 37 | \( 1 + (90.9 + 52.5i)T + (2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 + (191. + 110. i)T + (3.44e4 + 5.96e4i)T^{2} \) |
| 43 | \( 1 + (-56.0 - 97.0i)T + (-3.97e4 + 6.88e4i)T^{2} \) |
| 47 | \( 1 - 512. iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 221.T + 1.48e5T^{2} \) |
| 59 | \( 1 + (482. - 278. i)T + (1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-229. - 396. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-458. - 264. i)T + (1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 + (-58.5 + 33.7i)T + (1.78e5 - 3.09e5i)T^{2} \) |
| 73 | \( 1 + 104. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 611.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 491. iT - 5.71e5T^{2} \) |
| 89 | \( 1 + (-326. - 188. i)T + (3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 + (496. - 286. i)T + (4.56e5 - 7.90e5i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.03307696654649896442688469490, −16.01286565797540793298010119901, −14.86965609544306747728503129161, −13.83550610160791396192164991618, −11.80240784080167058729983132416, −11.01706449775405089261266237962, −9.445081460010016499771947749226, −7.38599936240909339681364804143, −5.12640840160697463593928620698, −4.39504102677803828056437179469,
1.89095595527684902840214352272, 5.17822042389354457891908704054, 6.60010098708107718570133843390, 8.224986110142498035863455076317, 10.79817218959722222193822344186, 11.89339979386038912590231776909, 12.56631071186745854762183705014, 14.11620808780201996721979729202, 15.07526386834331592777356934036, 17.11253226967435358479314307688