L(s) = 1 | + (−1.36 − 0.366i)2-s + (1.92 + 3.33i)3-s + (1.73 + i)4-s + (3.77 − 3.77i)5-s + (−1.40 − 5.25i)6-s + (−9.91 + 2.65i)7-s + (−1.99 − 2i)8-s + (−2.90 + 5.02i)9-s + (−6.53 + 3.77i)10-s + (2.71 − 10.1i)11-s + 7.69i·12-s + (−8.18 − 10.0i)13-s + 14.5·14-s + (19.8 + 5.31i)15-s + (1.99 + 3.46i)16-s + (4.23 + 2.44i)17-s + ⋯ |
L(s) = 1 | + (−0.683 − 0.183i)2-s + (0.641 + 1.11i)3-s + (0.433 + 0.250i)4-s + (0.754 − 0.754i)5-s + (−0.234 − 0.875i)6-s + (−1.41 + 0.379i)7-s + (−0.249 − 0.250i)8-s + (−0.322 + 0.558i)9-s + (−0.653 + 0.377i)10-s + (0.246 − 0.919i)11-s + 0.641i·12-s + (−0.629 − 0.776i)13-s + 1.03·14-s + (1.32 + 0.354i)15-s + (0.124 + 0.216i)16-s + (0.249 + 0.143i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 26 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.923 - 0.383i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 26 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.923 - 0.383i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.822404 + 0.163920i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.822404 + 0.163920i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.36 + 0.366i)T \) |
| 13 | \( 1 + (8.18 + 10.0i)T \) |
good | 3 | \( 1 + (-1.92 - 3.33i)T + (-4.5 + 7.79i)T^{2} \) |
| 5 | \( 1 + (-3.77 + 3.77i)T - 25iT^{2} \) |
| 7 | \( 1 + (9.91 - 2.65i)T + (42.4 - 24.5i)T^{2} \) |
| 11 | \( 1 + (-2.71 + 10.1i)T + (-104. - 60.5i)T^{2} \) |
| 17 | \( 1 + (-4.23 - 2.44i)T + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (-6.83 - 25.5i)T + (-312. + 180.5i)T^{2} \) |
| 23 | \( 1 + (17.2 - 9.97i)T + (264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (7.15 + 12.3i)T + (-420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (-19.0 + 19.0i)T - 961iT^{2} \) |
| 37 | \( 1 + (15.7 - 58.6i)T + (-1.18e3 - 684.5i)T^{2} \) |
| 41 | \( 1 + (4.83 + 1.29i)T + (1.45e3 + 840.5i)T^{2} \) |
| 43 | \( 1 + (10.3 + 5.98i)T + (924.5 + 1.60e3i)T^{2} \) |
| 47 | \( 1 + (7.59 + 7.59i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 - 77.0T + 2.80e3T^{2} \) |
| 59 | \( 1 + (60.7 - 16.2i)T + (3.01e3 - 1.74e3i)T^{2} \) |
| 61 | \( 1 + (-28.1 + 48.7i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-5.90 - 1.58i)T + (3.88e3 + 2.24e3i)T^{2} \) |
| 71 | \( 1 + (14.7 + 55.2i)T + (-4.36e3 + 2.52e3i)T^{2} \) |
| 73 | \( 1 + (-12.7 - 12.7i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 - 7.98T + 6.24e3T^{2} \) |
| 83 | \( 1 + (35.8 - 35.8i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 + (-20.9 + 78.2i)T + (-6.85e3 - 3.96e3i)T^{2} \) |
| 97 | \( 1 + (14.1 + 52.9i)T + (-8.14e3 + 4.70e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.00013548070062732803895849153, −16.26704206035522076080843420517, −15.23668404892895756445575741205, −13.59284591180924489086241131861, −12.23834017611332649565484381074, −10.04056676853149559398374877139, −9.643558416114212156081472626078, −8.414200846963753870410423786743, −5.86126712498175236756529226101, −3.32403950724458260739668169059,
2.45694893223072642811104559116, 6.64726784752073974216223813522, 7.19686918574269283431349104819, 9.228267890320454449470469874272, 10.23735311132700076069389175781, 12.30483861467732624535266742285, 13.54321777166127587621931512555, 14.50658791491638921249273604934, 16.13559619258165169677728024550, 17.53031204569929958531291977081