Properties

Label 2-26-1.1-c7-0-4
Degree $2$
Conductor $26$
Sign $-1$
Analytic cond. $8.12201$
Root an. cond. $2.84991$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·2-s − 39·3-s + 64·4-s + 385·5-s + 312·6-s − 293·7-s − 512·8-s − 666·9-s − 3.08e3·10-s − 5.40e3·11-s − 2.49e3·12-s + 2.19e3·13-s + 2.34e3·14-s − 1.50e4·15-s + 4.09e3·16-s − 2.10e4·17-s + 5.32e3·18-s − 2.73e4·19-s + 2.46e4·20-s + 1.14e4·21-s + 4.32e4·22-s − 6.30e4·23-s + 1.99e4·24-s + 7.01e4·25-s − 1.75e4·26-s + 1.11e5·27-s − 1.87e4·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.833·3-s + 1/2·4-s + 1.37·5-s + 0.589·6-s − 0.322·7-s − 0.353·8-s − 0.304·9-s − 0.973·10-s − 1.22·11-s − 0.416·12-s + 0.277·13-s + 0.228·14-s − 1.14·15-s + 1/4·16-s − 1.03·17-s + 0.215·18-s − 0.913·19-s + 0.688·20-s + 0.269·21-s + 0.865·22-s − 1.08·23-s + 0.294·24-s + 0.897·25-s − 0.196·26-s + 1.08·27-s − 0.161·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 26 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 26 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(26\)    =    \(2 \cdot 13\)
Sign: $-1$
Analytic conductor: \(8.12201\)
Root analytic conductor: \(2.84991\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 26,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p^{3} T \)
13 \( 1 - p^{3} T \)
good3 \( 1 + 13 p T + p^{7} T^{2} \)
5 \( 1 - 77 p T + p^{7} T^{2} \)
7 \( 1 + 293 T + p^{7} T^{2} \)
11 \( 1 + 5402 T + p^{7} T^{2} \)
17 \( 1 + 21011 T + p^{7} T^{2} \)
19 \( 1 + 27326 T + p^{7} T^{2} \)
23 \( 1 + 63072 T + p^{7} T^{2} \)
29 \( 1 - 122238 T + p^{7} T^{2} \)
31 \( 1 + 208396 T + p^{7} T^{2} \)
37 \( 1 + 442379 T + p^{7} T^{2} \)
41 \( 1 - 58000 T + p^{7} T^{2} \)
43 \( 1 + 202025 T + p^{7} T^{2} \)
47 \( 1 - 588511 T + p^{7} T^{2} \)
53 \( 1 - 1684336 T + p^{7} T^{2} \)
59 \( 1 + 442630 T + p^{7} T^{2} \)
61 \( 1 + 1083608 T + p^{7} T^{2} \)
67 \( 1 - 3443486 T + p^{7} T^{2} \)
71 \( 1 - 2084705 T + p^{7} T^{2} \)
73 \( 1 - 5937890 T + p^{7} T^{2} \)
79 \( 1 + 6609256 T + p^{7} T^{2} \)
83 \( 1 + 142740 T + p^{7} T^{2} \)
89 \( 1 + 6985286 T + p^{7} T^{2} \)
97 \( 1 + 200762 T + p^{7} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.66885780145088908854242561630, −13.86971349348151742307210578910, −12.62284679773150127884684477029, −10.94369025978432517939191168616, −10.10492723676852036712860160298, −8.626992702002756715150582372352, −6.54518408814233103989716025511, −5.47685771276203998293924043969, −2.22677345895488773830110414999, 0, 2.22677345895488773830110414999, 5.47685771276203998293924043969, 6.54518408814233103989716025511, 8.626992702002756715150582372352, 10.10492723676852036712860160298, 10.94369025978432517939191168616, 12.62284679773150127884684477029, 13.86971349348151742307210578910, 15.66885780145088908854242561630

Graph of the $Z$-function along the critical line