Properties

Label 2-26-1.1-c5-0-2
Degree $2$
Conductor $26$
Sign $1$
Analytic cond. $4.16997$
Root an. cond. $2.04205$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s − 10.0·3-s + 16·4-s + 80.2·5-s − 40.2·6-s + 208.·7-s + 64·8-s − 141.·9-s + 320.·10-s − 459.·11-s − 161.·12-s − 169·13-s + 834.·14-s − 807.·15-s + 256·16-s + 1.78e3·17-s − 566.·18-s − 2.12e3·19-s + 1.28e3·20-s − 2.10e3·21-s − 1.83e3·22-s − 3.09e3·23-s − 644.·24-s + 3.30e3·25-s − 676·26-s + 3.87e3·27-s + 3.33e3·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.645·3-s + 0.5·4-s + 1.43·5-s − 0.456·6-s + 1.60·7-s + 0.353·8-s − 0.582·9-s + 1.01·10-s − 1.14·11-s − 0.322·12-s − 0.277·13-s + 1.13·14-s − 0.926·15-s + 0.250·16-s + 1.49·17-s − 0.412·18-s − 1.34·19-s + 0.717·20-s − 1.03·21-s − 0.809·22-s − 1.22·23-s − 0.228·24-s + 1.05·25-s − 0.196·26-s + 1.02·27-s + 0.804·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 26 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 26 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(26\)    =    \(2 \cdot 13\)
Sign: $1$
Analytic conductor: \(4.16997\)
Root analytic conductor: \(2.04205\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 26,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(2.223178590\)
\(L(\frac12)\) \(\approx\) \(2.223178590\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 4T \)
13 \( 1 + 169T \)
good3 \( 1 + 10.0T + 243T^{2} \)
5 \( 1 - 80.2T + 3.12e3T^{2} \)
7 \( 1 - 208.T + 1.68e4T^{2} \)
11 \( 1 + 459.T + 1.61e5T^{2} \)
17 \( 1 - 1.78e3T + 1.41e6T^{2} \)
19 \( 1 + 2.12e3T + 2.47e6T^{2} \)
23 \( 1 + 3.09e3T + 6.43e6T^{2} \)
29 \( 1 + 2.89e3T + 2.05e7T^{2} \)
31 \( 1 + 4.10e3T + 2.86e7T^{2} \)
37 \( 1 - 6.32e3T + 6.93e7T^{2} \)
41 \( 1 + 913.T + 1.15e8T^{2} \)
43 \( 1 + 5.22e3T + 1.47e8T^{2} \)
47 \( 1 + 6.84e3T + 2.29e8T^{2} \)
53 \( 1 + 1.39e4T + 4.18e8T^{2} \)
59 \( 1 + 1.83e4T + 7.14e8T^{2} \)
61 \( 1 - 4.25e4T + 8.44e8T^{2} \)
67 \( 1 - 3.21e4T + 1.35e9T^{2} \)
71 \( 1 - 2.85e4T + 1.80e9T^{2} \)
73 \( 1 + 2.13e4T + 2.07e9T^{2} \)
79 \( 1 - 4.13e4T + 3.07e9T^{2} \)
83 \( 1 + 3.54e4T + 3.93e9T^{2} \)
89 \( 1 + 1.14e4T + 5.58e9T^{2} \)
97 \( 1 - 1.35e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.65393141509281787789022351935, −14.75021561878678320725060837236, −14.05199997379584470331190154786, −12.67548542762211480037290975431, −11.28212664178934284505791888180, −10.22118613187508597569152732301, −8.041958211122648473035761903482, −5.87771978695044039499789698161, −5.09509794415253796088132261534, −2.06394894328285352622557765711, 2.06394894328285352622557765711, 5.09509794415253796088132261534, 5.87771978695044039499789698161, 8.041958211122648473035761903482, 10.22118613187508597569152732301, 11.28212664178934284505791888180, 12.67548542762211480037290975431, 14.05199997379584470331190154786, 14.75021561878678320725060837236, 16.65393141509281787789022351935

Graph of the $Z$-function along the critical line