Properties

Label 2-26-1.1-c3-0-0
Degree $2$
Conductor $26$
Sign $1$
Analytic cond. $1.53404$
Root an. cond. $1.23856$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3·3-s + 4·4-s + 11·5-s − 6·6-s + 19·7-s − 8·8-s − 18·9-s − 22·10-s − 38·11-s + 12·12-s − 13·13-s − 38·14-s + 33·15-s + 16·16-s − 51·17-s + 36·18-s + 90·19-s + 44·20-s + 57·21-s + 76·22-s − 52·23-s − 24·24-s − 4·25-s + 26·26-s − 135·27-s + 76·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.983·5-s − 0.408·6-s + 1.02·7-s − 0.353·8-s − 2/3·9-s − 0.695·10-s − 1.04·11-s + 0.288·12-s − 0.277·13-s − 0.725·14-s + 0.568·15-s + 1/4·16-s − 0.727·17-s + 0.471·18-s + 1.08·19-s + 0.491·20-s + 0.592·21-s + 0.736·22-s − 0.471·23-s − 0.204·24-s − 0.0319·25-s + 0.196·26-s − 0.962·27-s + 0.512·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 26 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 26 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(26\)    =    \(2 \cdot 13\)
Sign: $1$
Analytic conductor: \(1.53404\)
Root analytic conductor: \(1.23856\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 26,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.119117757\)
\(L(\frac12)\) \(\approx\) \(1.119117757\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p T \)
13 \( 1 + p T \)
good3 \( 1 - p T + p^{3} T^{2} \)
5 \( 1 - 11 T + p^{3} T^{2} \)
7 \( 1 - 19 T + p^{3} T^{2} \)
11 \( 1 + 38 T + p^{3} T^{2} \)
17 \( 1 + 3 p T + p^{3} T^{2} \)
19 \( 1 - 90 T + p^{3} T^{2} \)
23 \( 1 + 52 T + p^{3} T^{2} \)
29 \( 1 + 190 T + p^{3} T^{2} \)
31 \( 1 - 292 T + p^{3} T^{2} \)
37 \( 1 + 441 T + p^{3} T^{2} \)
41 \( 1 - 312 T + p^{3} T^{2} \)
43 \( 1 - 373 T + p^{3} T^{2} \)
47 \( 1 + 41 T + p^{3} T^{2} \)
53 \( 1 - 468 T + p^{3} T^{2} \)
59 \( 1 - 530 T + p^{3} T^{2} \)
61 \( 1 - 592 T + p^{3} T^{2} \)
67 \( 1 + 206 T + p^{3} T^{2} \)
71 \( 1 + 863 T + p^{3} T^{2} \)
73 \( 1 + 322 T + p^{3} T^{2} \)
79 \( 1 + 460 T + p^{3} T^{2} \)
83 \( 1 - 528 T + p^{3} T^{2} \)
89 \( 1 - 870 T + p^{3} T^{2} \)
97 \( 1 + 346 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.44897771017306689358530248004, −15.79101133149418082435901074445, −14.45347470891581209499784903712, −13.48182305516904666332503457499, −11.56846251749008817090355118332, −10.20943786841303125251742181304, −8.882665630376888335422700096578, −7.68213431936305628037159134047, −5.53357861054215551559310159046, −2.30891282118984490867625239305, 2.30891282118984490867625239305, 5.53357861054215551559310159046, 7.68213431936305628037159134047, 8.882665630376888335422700096578, 10.20943786841303125251742181304, 11.56846251749008817090355118332, 13.48182305516904666332503457499, 14.45347470891581209499784903712, 15.79101133149418082435901074445, 17.44897771017306689358530248004

Graph of the $Z$-function along the critical line