Properties

Label 2-2592-9.4-c1-0-5
Degree $2$
Conductor $2592$
Sign $-0.173 - 0.984i$
Analytic cond. $20.6972$
Root an. cond. $4.54942$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1 − 1.73i)5-s + (−0.5 − 0.866i)7-s + (1 + 1.73i)11-s + (−0.5 + 0.866i)13-s − 6·17-s − 5·19-s + (−3 + 5.19i)23-s + (0.500 + 0.866i)25-s + (4 + 6.92i)29-s + (−4 + 6.92i)31-s − 1.99·35-s − 5·37-s + (4 − 6.92i)41-s + (2 + 3.46i)43-s + (5 + 8.66i)47-s + ⋯
L(s)  = 1  + (0.447 − 0.774i)5-s + (−0.188 − 0.327i)7-s + (0.301 + 0.522i)11-s + (−0.138 + 0.240i)13-s − 1.45·17-s − 1.14·19-s + (−0.625 + 1.08i)23-s + (0.100 + 0.173i)25-s + (0.742 + 1.28i)29-s + (−0.718 + 1.24i)31-s − 0.338·35-s − 0.821·37-s + (0.624 − 1.08i)41-s + (0.304 + 0.528i)43-s + (0.729 + 1.26i)47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2592 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.173 - 0.984i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2592 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.173 - 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2592\)    =    \(2^{5} \cdot 3^{4}\)
Sign: $-0.173 - 0.984i$
Analytic conductor: \(20.6972\)
Root analytic conductor: \(4.54942\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2592} (1729, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2592,\ (\ :1/2),\ -0.173 - 0.984i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9161205837\)
\(L(\frac12)\) \(\approx\) \(0.9161205837\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + (-1 + 1.73i)T + (-2.5 - 4.33i)T^{2} \)
7 \( 1 + (0.5 + 0.866i)T + (-3.5 + 6.06i)T^{2} \)
11 \( 1 + (-1 - 1.73i)T + (-5.5 + 9.52i)T^{2} \)
13 \( 1 + (0.5 - 0.866i)T + (-6.5 - 11.2i)T^{2} \)
17 \( 1 + 6T + 17T^{2} \)
19 \( 1 + 5T + 19T^{2} \)
23 \( 1 + (3 - 5.19i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + (-4 - 6.92i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 + (4 - 6.92i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + 5T + 37T^{2} \)
41 \( 1 + (-4 + 6.92i)T + (-20.5 - 35.5i)T^{2} \)
43 \( 1 + (-2 - 3.46i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 + (-5 - 8.66i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + 4T + 53T^{2} \)
59 \( 1 + (7 - 12.1i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (1.5 + 2.59i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (-6.5 + 11.2i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + 4T + 71T^{2} \)
73 \( 1 - 9T + 73T^{2} \)
79 \( 1 + (5.5 + 9.52i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + (-6 - 10.3i)T + (-41.5 + 71.8i)T^{2} \)
89 \( 1 - 2T + 89T^{2} \)
97 \( 1 + (0.5 + 0.866i)T + (-48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.009022716472264418779033159351, −8.634537837675451359002650181598, −7.44434627837536520937000682171, −6.82889127460352438549083489107, −6.04797544319859575536319676420, −5.05229215526127219463454538780, −4.45531722659863800064174109647, −3.54820953935455949684083733370, −2.20401594086502327641214219011, −1.38136835743757724794755140731, 0.28553088501887923982534574652, 2.19215591558151794541522193288, 2.58888551232916792624614062988, 3.89219501947325747785986371395, 4.59009484245182620070375389666, 5.87392053169782770705470233369, 6.33343729755726719893649220422, 6.90399314407430787810710999240, 8.046976466648692633894050132124, 8.649944092255145522756546529039

Graph of the $Z$-function along the critical line